New insights into targeting mitochondria in ischemic injury
- PMID: 33751318
- DOI: 10.1007/s10495-021-01661-5
New insights into targeting mitochondria in ischemic injury
Abstract
Stroke is the leading cause of adult disability and death worldwide. Mitochondrial dysfunction has been recognized as a marker of neuronal death during ischemic stroke. Maintaining the function of mitochondria is important for improving the survival of neurons and maintaining neuronal function. Damaged mitochondria induce neuronal cell apoptosis by releasing reactive oxygen species (ROS) and pro-apoptotic factors. Mitochondrial fission and fusion processes and mitophagy are of great importance to mitochondrial quality control. This paper reviews the dynamic changes in mitochondria, the roles of mitochondria in different cell types, and related signaling pathways in ischemic stroke. This review describes in detail the role of mitochondria in the process of neuronal injury and protection in cerebral ischemia, and integrates neuroprotective drugs targeting mitochondria in recent years, which may provide a theoretical basis for the progress of treatment of ischemic stroke. The potential of mitochondrial-targeted therapy is also emphasized, which provides valuable insights for clinical research.
Keywords: Ischemic stroke; Mitochondria; Mitochondrial dynamics; Mitophagy; Neuroprotective drugs; Reactive oxygen species.
Similar articles
-
Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury.Mol Neurobiol. 2021 Oct;58(10):5253-5271. doi: 10.1007/s12035-021-02494-8. Epub 2021 Jul 18. Mol Neurobiol. 2021. PMID: 34275087 Review.
-
3-n-butylphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke.Drug Des Devel Ther. 2018 Dec 14;12:4261-4271. doi: 10.2147/DDDT.S189472. eCollection 2018. Drug Des Devel Ther. 2018. PMID: 30587922 Free PMC article.
-
Hydrogen exerts neuroprotective effects on OGD/R damaged neurons in rat hippocampal by protecting mitochondrial function via regulating mitophagy mediated by PINK1/Parkin signaling pathway.Brain Res. 2018 Nov 1;1698:89-98. doi: 10.1016/j.brainres.2018.06.028. Epub 2018 Jun 27. Brain Res. 2018. PMID: 29958907
-
Diverse roles of mitochondria in ischemic stroke.Redox Biol. 2018 Jun;16:263-275. doi: 10.1016/j.redox.2018.03.002. Epub 2018 Mar 9. Redox Biol. 2018. PMID: 29549824 Free PMC article. Review.
-
Ligustilide attenuates ischemic stroke injury by promoting Drp1-mediated mitochondrial fission via activation of AMPK.Phytomedicine. 2022 Jan;95:153884. doi: 10.1016/j.phymed.2021.153884. Epub 2021 Dec 11. Phytomedicine. 2022. PMID: 34929562
Cited by
-
Exploring the Neuroprotective Effects of Lithium in Ischemic Stroke: A literature review.Int J Med Sci. 2024 Jan 1;21(2):284-298. doi: 10.7150/ijms.88195. eCollection 2024. Int J Med Sci. 2024. PMID: 38169754 Free PMC article. Review.
-
Meldonium, as a potential neuroprotective agent, promotes neuronal survival by protecting mitochondria in cerebral ischemia-reperfusion injury.J Transl Med. 2024 Aug 15;22(1):771. doi: 10.1186/s12967-024-05222-7. J Transl Med. 2024. PMID: 39148053 Free PMC article.
-
MicroRNA-193b-3p reduces oxidative stress and mitochondrial damage in rats with cerebral ischemia-reperfusion injury via the seven in absentia homolog 1/Jun N-terminal kinase pathway.Bioengineered. 2022 Mar;13(3):6942-6954. doi: 10.1080/21655979.2022.2036398. Bioengineered. 2022. PMID: 35249453 Free PMC article.
-
FOXO3-induced microRNA-128-3p promotes the progression of spinal cord injury in mice via regulating NLRP3 inflammasome-mediated pyroptosis.Front Immunol. 2025 Feb 21;16:1526721. doi: 10.3389/fimmu.2025.1526721. eCollection 2025. Front Immunol. 2025. PMID: 40061945 Free PMC article.
-
Mechanistic insights of neuronal death and neuroprotective therapeutic approaches in stroke.Neural Regen Res. 2026 Mar 1;21(3):869-886. doi: 10.4103/NRR.NRR-D-24-01324. Epub 2025 Apr 29. Neural Regen Res. 2026. PMID: 40313116 Free PMC article.
References
-
- Adibhatla RM, Hatcher JF (2008) Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord Drug Targets 7(3):243–253. https://doi.org/10.2174/187152708784936608 - DOI - PubMed - PMC
-
- Henninger N, Fisher M (2016) Extending the Time Window for Endovascular and Pharmacological Reperfusion. Transl Stroke Res 7(4):284–293. https://doi.org/10.1007/s12975-015-0444-4 - DOI - PubMed
-
- Wang X, Asahi M, Lo EH (1999) Tissue type plasminogen activator amplifies hemoglobin-induced neurotoxicity in rat neuronal cultures. Neurosci Lett 274(2):79–82. https://doi.org/10.1016/s0304-3940(99)00682-5 - DOI - PubMed
-
- Segura T, Calleja S, Jordan J (2008) Recommendations and treatment strategies for the management of acute ischemic stroke. Expert Opin Pharmacother 9(7):1071–1085. https://doi.org/10.1517/14656566.9.7.1071 - DOI - PubMed
-
- Andrabi SS, Parvez S, Tabassum H (2020) Ischemic stroke and mitochondria: mechanisms and targets. Protoplasma 257(2):335–343. https://doi.org/10.1007/s00709-019-01439-2 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources