Hyperosmolality in CHO culture: Effects on cellular behavior and morphology
- PMID: 33751545
- DOI: 10.1002/bit.27747
Hyperosmolality in CHO culture: Effects on cellular behavior and morphology
Abstract
Exposure of Chinese hamster ovary cells (CHO) to highly concentrated feed solution during fed-batch cultivation is known to result in an unphysiological osmolality increase (>300 mOsm/kg), affecting cell physiology and morphology. Extending previous observation on osmotic adaptation, the present study investigates for the first time potential effects of hyperosmolality on CHO cells on both population and single-cell level. We intentionally exposed CHO cells to hyperosmolality of up to 545 mOsm/kg during fed-batch cultivation. In concordance with existing research data, hyperosmolality-exposed CHO cells showed a nearly triplicated volume accompanied by ablation of proliferation. On the molecular level, we observed a strong hyperosmolality-dependent increase in mitochondrial activity in CHO cells compared to control. In contrast to mitochondrial activity, hyperosmolality-dependent proliferation arrest of CHO cells was not accompanied by DNA accumulation or caspase-3/7-mediated apoptosis. Notably, we demonstrate for the first time a formation of up to eight multiple, small nuclei in single hyperosmolality-stressed CHO cells. The here presented observations reveal previously unknown hyperosmolality-dependent morphological changes in CHO cells and support existing data on the osmotic response in mammalian cells.
Keywords: CHO; cell morphology; cell size; fed-batch; hyperosmolality; mitochondria.
© 2021 The Authors. Genetic Epidemiology Published by Wiley Periodicals LLC.
Similar articles
-
Hyperosmolality in CHO cell culture: effects on the proteome.Appl Microbiol Biotechnol. 2022 Apr;106(7):2569-2586. doi: 10.1007/s00253-022-11861-x. Epub 2022 Mar 21. Appl Microbiol Biotechnol. 2022. PMID: 35312825 Free PMC article.
-
Single-Cell Analysis of CHO Cells Reveals Clonal Heterogeneity in Hyperosmolality-Induced Stress Response.Cells. 2022 May 27;11(11):1763. doi: 10.3390/cells11111763. Cells. 2022. PMID: 35681457 Free PMC article.
-
The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures.Appl Microbiol Biotechnol. 2019 Feb;103(3):1217-1229. doi: 10.1007/s00253-018-9555-7. Epub 2018 Dec 15. Appl Microbiol Biotechnol. 2019. PMID: 30554388
-
Development of hyper osmotic resistant CHO host cells for enhanced antibody production.J Biosci Bioeng. 2018 Apr;125(4):470-478. doi: 10.1016/j.jbiosc.2017.11.002. Epub 2017 Dec 8. J Biosci Bioeng. 2018. PMID: 29233458
-
Autophagy and its implication in Chinese hamster ovary cell culture.Biotechnol Lett. 2013 Nov;35(11):1753-63. doi: 10.1007/s10529-013-1276-5. Epub 2013 Jul 24. Biotechnol Lett. 2013. PMID: 23881315 Review.
Cited by
-
Continuous Feeding Reduces the Generation of Metabolic Byproducts and Increases Antibodies Expression in Chinese Hamster Ovary-K1 Cells.Life (Basel). 2021 Sep 10;11(9):945. doi: 10.3390/life11090945. Life (Basel). 2021. PMID: 34575094 Free PMC article.
-
Incorporating shaken 24-deep-well plate fed-batch culture shortens CHO cell line development time.Cytotechnology. 2025 Apr;77(2):64. doi: 10.1007/s10616-025-00728-4. Epub 2025 Feb 19. Cytotechnology. 2025. PMID: 39991703
-
Hyperosmolality in CHO cell culture: effects on the proteome.Appl Microbiol Biotechnol. 2022 Apr;106(7):2569-2586. doi: 10.1007/s00253-022-11861-x. Epub 2022 Mar 21. Appl Microbiol Biotechnol. 2022. PMID: 35312825 Free PMC article.
-
Effects of various disaccharide adaptations on recombinant IgA1 production in CHO-K1 suspension cells.Cytotechnology. 2023 Jun;75(3):219-229. doi: 10.1007/s10616-023-00571-5. Epub 2023 Mar 16. Cytotechnology. 2023. PMID: 37163134 Free PMC article.
-
A novel hybrid bioprocess strategy addressing key challenges of advanced biomanufacturing.Front Bioeng Biotechnol. 2023 Jun 30;11:1211410. doi: 10.3389/fbioe.2023.1211410. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 37456731 Free PMC article.
References
REFERENCES
-
- Ademowo, O. S., Dias, H. K. I., Burton, D. G. A., & Griffiths, H. R. (2017). Lipid (per) oxidation in mitochondria: An emerging target in the ageing process? Biogerontology, 18(6), 859-879. https://pubmed.ncbi.nlm.nih.gov/28540446
-
- Ahn, J.-H., Cho, M.-G., Sohn, S., & Lee, J.-H. (2019). Inhibition of PP2A activity by H2O2 during mitosis disrupts nuclear envelope reassembly and alters nuclear shape. Experimental & Molecular Medicine, 51(6), 1-18. https://doi.org/10.1038/s12276-019-0260-0
-
- Alexander, M. R., Tyers, M., Perret, M., Craig, B. M., Fang, K. S., & Gustin, M. C. (2001). Regulation of cell cycle progression by SWE1P and HOG1P following hypertonic stress. Molecular Biology of the Cell, 12(1), 53-62. https://doi.org/10.1091/mbc.12.1.53
-
- Al-Rubeai, M., Chalder, S., Bird, R., & Emery, A. N. (1991). Cell cycle, cell size and mitochondrial activity of hybridoma cells during batch cultivation. Cytotechnology, 7(3), 179-186. https://doi.org/10.1007/BF00365929
-
- Bi, J.-X., Shuttleworth, J., & Al-Rubeai, M. (2004). Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. Biotechnology and Bioengineering, 85(7), 741-749.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials