Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988;3(1):1-17.
doi: 10.1002/prot.340030102.

Two trifluoperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin-C

Affiliations
Comparative Study

Two trifluoperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin-C

N C Strynadka et al. Proteins. 1988.

Abstract

Among the known regulatory proteins that are conformationally sensitive to the binding of calcium ions, calmodulin and troponin-C have the greatest primary sequence homology. This observation has led to the conclusion that the most accurate predicted molecular model of calmodulin would be based on the X-ray crystallographic coordinates of the highly refined structure of turkey skeletal troponin-C. This paper describes the structure of calmodulin built from such a premise. The resulting molecular model was subjected to conjugate gradient energy minimization to remove unacceptable intramolecular non-bonded contacts. In the analysis of the resulting structure, many features of calmodulin, including the detailed conformation of the Ca2+-binding loops, the amino- and carboxy-terminal hydrophobic patches of the Ca2+-bound form, and the several clusters of acidic residues can be reconciled with much of the previously published solution data. Calmodulin is missing the N-terminal helix characteristic of troponin-C. The deletion of three residues from the central helical linker (denoted D/E in troponin-C) shortens the molecule and changes the orientation of the two domains of calmodulin by 60 degrees relative to those in troponin-C. The molecular model has been used to derive two possible binding sites for the antipsychotic drug trifluoperazine, a potent competitive inhibitor of calmodulin activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources