Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 22;22(1):224.
doi: 10.1186/s13063-021-05134-7.

Post-exposure prophylaxis against SARS-CoV-2 in close contacts of confirmed COVID-19 cases (CORIPREV): study protocol for a cluster-randomized trial

Affiliations

Post-exposure prophylaxis against SARS-CoV-2 in close contacts of confirmed COVID-19 cases (CORIPREV): study protocol for a cluster-randomized trial

Darrell H S Tan et al. Trials. .

Abstract

Background: Post-exposure prophylaxis (PEP) is a well-established strategy for the prevention of infectious diseases, in which recently exposed people take a short course of medication to prevent infection. The primary objective of the COVID-19 Ring-based Prevention Trial with lopinavir/ritonavir (CORIPREV-LR) is to evaluate the efficacy of a 14-day course of oral lopinavir/ritonavir as PEP against COVID-19 among individuals with a high-risk exposure to a confirmed case.

Methods: This is an open-label, multicenter, 1:1 cluster-randomized trial of LPV/r 800/200 mg twice daily for 14 days (intervention arm) versus no intervention (control arm), using an adaptive approach to sample size calculation. Participants will be individuals aged > 6 months with a high-risk exposure to a confirmed COVID-19 case within the past 7 days. A combination of remote and in-person study visits at days 1, 7, 14, 35, and 90 includes comprehensive epidemiological, clinical, microbiologic, and serologic sampling. The primary outcome is microbiologically confirmed COVID-19 infection within 14 days after exposure, defined as a positive respiratory tract specimen for SARS-CoV-2 by polymerase chain reaction. Secondary outcomes include safety, symptomatic COVID-19, seropositivity, hospitalization, respiratory failure requiring ventilator support, mortality, psychological impact, and health-related quality of life. Additional analyses will examine the impact of LPV/r on these outcomes in the subset of participants who test positive for SARS-CoV-2 at baseline. To detect a relative risk reduction of 40% with 80% power at α = 0.05, assuming the secondary attack rate in ring members (p0) = 15%, 5 contacts per case and intra-class correlation coefficient (ICC) = 0.05, we require 110 clusters per arm, or 220 clusters overall and approximately 1220 enrollees after accounting for 10% loss-to-follow-up. We will modify the sample size target after 60 clusters, based on preliminary estimates of p0, ICC, and cluster size and consider switching to an alternative drug after interim analyses and as new data emerges. The primary analysis will be a generalized linear mixed model with logit link to estimate the effect of LPV/r on the probability of infection. Participants who test positive at baseline will be excluded from the primary analysis but will be maintained for additional analyses to examine the impact of LPV/r on early treatment.

Discussion: Harnessing safe, existing drugs such as LPV/r as PEP could provide an important tool for control of the COVID-19 pandemic. Novel aspects of our design include the ring-based prevention approach, and the incorporation of remote strategies for conducting study visits and biospecimen collection.

Trial registration: This trial was registered at www.ClinicalTrials.gov ( NCT04321174 ) on March 25, 2020.

Keywords: COVID-19; Chemoprophylaxis; Cluster randomization; Lopinavir/ritonavir; Post-exposure prophylaxis; Protocol; Randomized controlled trial.

PubMed Disclaimer

Conflict of interest statement

DHST has received investigator-initiated research grants to his institution from Gilead and Viiv Healthcare. DHST is a Site Principal Investigator for clinical trials sponsored by Glaxo Smith Kline. PJ serves as an unpaid member of the steering group or executive committee of trials funded by Abbott Vascular, Astra Zeneca, Biotronik, Biosensors, St. Jude Medical, Terumo, and The Medicines Company, has received research grants to the institution from Appili Therapeutics, Astra Zeneca, Biotronik, Biosensors International, Eli Lilly, The Medicines Company, and honoraria to the institution for participation in advisory boards and/or consulting from Amgen, Ava, and Fresenius, but has not received personal payments by any pharmaceutical company or device manufacturer. SLW serves on advisory boards, speaks at continuing medical education events and conducts clinical trials through her institution with Gilead, Merck, Viiv Healthcare, and Jansen.

Similar articles

Cited by

References

    1. Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020;25(4). 10.2807/1560-7917.ES.2020.25.4.2000058. - PMC - PubMed
    1. Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. JAMA. 2020;323(14):1335. 10.1001/jama.2020.4344. - PubMed
    1. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–2615. doi: 10.1056/NEJMoa2034577. - DOI - PMC - PubMed
    1. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi: 10.1056/NEJMoa2035389. - DOI - PMC - PubMed
    1. WHO R&D Blueprint COVID-19. Informal consultation on the role of therapeutics in COVID-19 prophylaxis and post-exposure prophylaxis. Geneva: World Health Organization (WHO); 2020. 31st March 2020.

Publication types

Associated data