Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar;71(3):269-85.
doi: 10.1016/0034-5687(88)90021-7.

Longitudinal mixing in dog lungs during high-frequency forced flow oscillation

Affiliations

Longitudinal mixing in dog lungs during high-frequency forced flow oscillation

B Reisfeld et al. Respir Physiol. 1988 Mar.

Abstract

Longitudinal mixing in the conducting airways of eight intubated anesthetized beagles (10.8 +/- 0.9 kg) was studied at functional residual capacity in the presence of forced sinusoidal flow oscillations and in the absence of fresh air bias flow. The ranges of oscillation conditions were: frequencies, f, from 3 to 18 Hz and minute volumes, Vosc, from 50 to 150 ml/sec, corresponding to tidal volumes, Vosc/f, from 0.3 to 4.5 ml/kg body mass. Oscillations were imposed during a breath holding interval incorporated into a modified single-breath nitrogen (N2) washout maneuver. The expired N2 fraction curves were analyzed with a Fickian diffusion model by adjusting the value of a global mixing parameter, (DA2), to achieve an optimal fit of the model to the data. The mixing parameter was an increasing function of minute volume and a decreasing function of frequency, which is well represented by the equation: (DA2) = 2.72 Vosc 1.74 f-1.57 By comparison to available theory and previous measurements in physical systems, this formula implies that Taylor-type dispersion is the dominant mixing mechanism in the conducting airways. Also, the diffusion model predicted, and the data verified, the existence of a mouth-ward 'diffusion flow' during breath holding. This effect, caused by the non-uniform nature of the summed airway cross-section, is directly correlated with the value of (DA2).

PubMed Disclaimer

Publication types