Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 10:764:142803.
doi: 10.1016/j.scitotenv.2020.142803. Epub 2020 Oct 8.

Linking the unique molecular complexity of dissolved organic matter to flood period in the Yangtze River mainstream

Affiliations

Linking the unique molecular complexity of dissolved organic matter to flood period in the Yangtze River mainstream

Yu Pang et al. Sci Total Environ. .

Abstract

Large rivers transport a significant amount of terrestrially derived dissolved organic matter (DOM) to coastal oceans, consisting of a critical component of the global biogeochemical cycle. Although high flow events usually introduce more terrestrial DOM than baseflow, the underlying molecular complexity and lability of DOM during high discharge are not well constrained, especially in large river ecosystems. By combining ultraviolet and fluorescent spectroscopy, and ultrahigh-resolution mass spectrometry, we found that stronger terrestrial DOM signal was detected during high discharge than normal discharge in the Yangtze River mainstream. The averaged DOC concentration was higher during high discharge than normal discharge. Optical properties confirmed higher aromaticity and relatively higher humic-like fluorescent components in DOM during high discharge. The molecular composition showed significantly higher molecular complexity, averaged molecular weight, aromaticity, relative abundances of polyphenols and highly unsaturated compounds of DOM during high discharge than normal discharge. A large set of unique molecular formulae (up to 4927) was only detected during high discharge. These unique molecular formulae were mostly lignin degradation products, likely due to more intensive soil leaching during high discharge. By comparing with incubation experiments and the Yangtze River mouth and East China Sea DOM molecular composition, some of these unique molecular formulae during high discharge are resistant to both bio- and photo-degradation, and persist during their transport to the East China Sea. Therefore, we suggest that high discharge will additionally introduce a relatively recalcitrant pool of DOM into the Yangtze River mainstream and persist during its journey to the ocean. Considering the projected increase of flood frequency, this study provides a preliminary foundation for further studies to better assess the underlying mechanisms how hydrology affect the biogeochemical cycling of DOM in large rivers.

Keywords: Dissolved organic matter; Flood season; Molecular complexity; Recalcitrant molecules; Yangtze River.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this manuscript.

LinkOut - more resources