Pregnancy-associated plasma protein-aa regulates endoplasmic reticulum-mitochondria associations
- PMID: 33759764
- PMCID: PMC8024009
- DOI: 10.7554/eLife.59687
Pregnancy-associated plasma protein-aa regulates endoplasmic reticulum-mitochondria associations
Abstract
Endoplasmic reticulum (ER) and mitochondria form close physical associations to facilitate calcium transfer, thereby regulating mitochondrial function. Neurons with high metabolic demands, such as sensory hair cells, are especially dependent on precisely regulated ER-mitochondria associations. We previously showed that the secreted metalloprotease pregnancy-associated plasma protein-aa (Pappaa) regulates mitochondrial function in zebrafish lateral line hair cells (Alassaf et al., 2019). Here, we show that pappaa mutant hair cells exhibit excessive and abnormally close ER-mitochondria associations, suggesting increased ER-mitochondria calcium transfer. pappaa mutant hair cells are more vulnerable to pharmacological induction of ER-calcium transfer. Additionally, pappaa mutant hair cells display ER stress and dysfunctional downstream processes of the ER-mitochondria axis including altered mitochondrial morphology and reduced autophagy. We further show that Pappaa influences ER-calcium transfer and autophagy via its ability to stimulate insulin-like growth factor-1 bioavailability. Together our results identify Pappaa as a novel regulator of the ER-mitochondria axis.
Keywords: ER stress; IGF signaling; autophagy; cell biology; hair cell; neurodegeneration; neuroscience; zebrafish.
© 2021, Alassaf and Halloran.
Conflict of interest statement
MA, MH No competing interests declared
Figures
References
-
- Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJ, Madra M, Ikenouchi J, Umeda M, Bird TD, Sturley SL, Schon EA. Upregulated function of mitochondria-associated ER membranes in alzheimer disease. The EMBO Journal. 2012;31:4106–4123. doi: 10.1038/emboj.2012.202. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
