Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Mar 24;3(3):CD013705.
doi: 10.1002/14651858.CD013705.pub2.

Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection

Affiliations
Meta-Analysis

Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection

Jacqueline Dinnes et al. Cochrane Database Syst Rev. .

Update in

  • Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
    Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Dinnes J, et al. Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3. Cochrane Database Syst Rev. 2022. PMID: 35866452 Free PMC article.

Abstract

Background: Accurate rapid diagnostic tests for SARS-CoV-2 infection could contribute to clinical and public health strategies to manage the COVID-19 pandemic. Point-of-care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission.

Objectives: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups.

Search methods: Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID-19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions.

Selection criteria: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established diagnostic criteria).

Data collection and analysis: Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS-2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular-based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status.

Main results: Seventy-eight study cohorts were included (described in 64 study reports, including 20 pre-prints), reporting results for 24,087 samples (7,415 with confirmed SARS-CoV-2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (50%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (45%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS-CoV-2 based on a single RT-PCR result, and none included participants meeting case definitions for probable COVID-19. Antigen tests Forty-eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR ≤25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self-testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer's instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset.

Authors' conclusions: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID-19 diagnostics ('acceptable' sensitivity ≥ 80% and specificity ≥ 97%), can be considered as a replacement for laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT-PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self-testing) are required.

PubMed Disclaimer

Conflict of interest statement

Jonathan J Deeks: JD has published or been quoted in opinion pieces in scientific publications, and in the mainstream and social media related to diagnostic testing. JD was the statistician on the Birmingham evaluation of the Innova test which is mentioned in the discussion of the paper. There was no funding for this evaluation of the Innova test. JD is a member of the Royal Statistical Society (RSS) COVID‐19 taskforce steering group, and co‐chair of the RSS Diagnostic Test Advisory Group. He is a consultant adviser to the WHO Essential Diagnostic List. JD receives payment from the BMJ as their Chief Statistical advisor.

Jacqueline Dinnes: none known

Yemisi Takwoingi: none known

Clare Davenport: none known

Mariska MG Leeflang: none known

René Spijker: none known

Lotty Hooft: none known

Ann Van den Bruel: none known

Devy Emperador: is employed by FIND with funding from DFID and KFW. FIND is a global non‐for profit product development partnership and WHO Diagnostic Collaboration Centre. It is FIND’s role to accelerate access to high‐quality diagnostic tools for low‐resource settings and this is achieved by supporting both R&D and access activities for a wide range of diseases, including COVID‐19. FIND has several clinical research projects to evaluate multiple new diagnostic tests against published Target Product Profiles that have been defined through consensus processes. These studies are for diagnostic products developed by private sector companies who provide access to know‐how, equipment/reagents, and contribute through unrestricted donations as per FIND policy and external SAC review.

Sabine Dittrich: is employed by FIND with funding from DFID and Australian Aid. FIND is a global non‐for profit product development partnership and WHO Diagnostic Collaboration Centre. It is FIND’s role to accelerate access to high‐quality diagnostic tools for low‐resource settings and this is achieved by supporting both R&D and access activities for a wide range of diseases, including COVID‐19. FIND has several clinical research projects to evaluate multiple new diagnostic tests against published Target Product Profiles that have been defined through consensus processes. These studies are for diagnostic products developed by private sector companies who provide access to know‐how, equipment/reagents, and contribute through unrestricted donations as per FIND policy and external SAC review.

Ada Adriano: none known

Sophie Beese: none known

Janine Dretzke: none known

Lavinia Ferrante di Ruffano: none known

Isobel Harris: none known

Malcolm Price: none known

Sian Taylor‐Phillips: none known

Sarah Berhane: none known

Jane Cunningham: none known

Figures

1
1
Study flow diagram
2
2
Risk of bias and applicability concerns graph: review authors' judgements about each domain presented as percentages across included studies. Numbers in the bars indicate the number of studies
3
3
Forest plot of studies evaluating antigen tests. BR: Brazil; CH: Switzerland; DE: Germany; HCW: healthcare worker; Lab: laboratory
4
4
Forest plot of data for antigen tests according to symptom status. A&E: accident and emergency; BR: Brazil; CH: Switzerland; DE: Germany; HCW: healthcare worker; Lab: laboratory
5
5
Forest plot of antigen test evaluations by week post symptom onset (pso). A&E: accident and emergency; Ag: antigen; BR: Brazil; CH: Switzerland; DE: Germany
6
6
Forest plot by test brand for assays with ≥ 3 evaluations. BR: Brazil; CGIA: colloidal‐gold immunoassay; CH: Switzerland; DE: Germany; FIA: fluorescent immunoassay; HCW: healthcare worker; IFU: instructions for use; Lab: laboratory; LFA: lateral flow assay
7
7
Forest plot by test brand for assays with < 3 evaluations; CGIA: colloidal‐gold immunoassay; FIA: fluorescent immunoassay; IFU: instructions for use; LFA: lateral flow assay
8
8
Forest plot of studies reporting comparative data. CGIA: colloidal‐gold immunoassay; FIA: fluorescent immunoassay; LFA: lateral flow assay; nos: not otherwise specified
9
9
Forest plot of studies evaluating rapid molecular tests. A&E: accident and emergency
10
10
Forest plot by test brand for molecular assays. A&E: accident and emergency; IFU: instructions for use
11
11
Risk of bias and applicability concerns graph: review authors' judgements about each domain presented as percentages across included studies
12
12
Risk of bias and applicability concerns graph: review authors' judgements about each domain presented as percentages across included studies
13
13
Risk of bias and applicability concerns summary: review authors' judgements about each domain for each included study
14
14
Forest plot of antigen test evaluations by study design. BR: Brazil; CH: Switzerland; DE: Germany; HCW: healthcare worker
15
15
Forest plot of studies evaluating antigen tests: higher versus lower viral load (< or > 25 Ct). BR: Brazil; CH: Switzerland; Ct: cycle threshold; DE: Germany; HCW: healthcare worker
16
16
Forest plot of studies evaluating antigen tests: higher versus lower viral load (< or > 32/33 Ct threshold). BR: Brazil; CH: Switzerland; ; Ct: cycle threshold; DE: Germany
17
17
Forest plot of studies evaluating antigen tests: higher versus lower viral load (other Ct thresholds). Ct: cycle threshold; HCW: healthcare worker
18
18
Forest plot of molecular test evaluations by study design
19
19
Forest plot of studies evaluating rapid molecular tests: high versus low viral load (30 Ct threshold). Ct: cycle threshold
20
20
Forest plot of studies evaluating rapid molecular tests: high versus low viral load (other Ct thresholds). Ct: cycle threshold
21
21
Rapid molecular assays before and after discrepant analysis
1
1. Test
Antigen tests ‐ All
2
2. Test
Antigen tests ‐ symptomatic
3
3. Test
Antigen tests ‐ asymptomatic
4
4. Test
Antigen tests ‐ mixed symptoms or not reported
5
5. Test
Antigen tests ‐ Ct values < or <=25
6
6. Test
Antigen tests ‐ Ct values >25
7
7. Test
Antigen tests ‐ Ct values < or <=32/33
8
8. Test
Antigen tests ‐ Ct values >32/33
9
9. Test
Antigen tests ‐ other Ct thresholds for 'higher' viral load
10
10. Test
Antigen tests ‐ other Ct thresholds for 'lower' viral load
11
11. Test
Antigen tests ‐ week 1 after symptom onset
12
12. Test
Antigen tests ‐ week 2 after symptom onset
13
13. Test
Molecular tests ‐ all
14
14. Test
Molecular tests ‐ all (before discrepant analysis)
15
15. Test
Molecular tests ‐ all (after discrepant analysis)
16
16. Test
Molecular tests ‐ Ct values < or <=30
17
17. Test
Molecular tests ‐ Ct values >30
18
18. Test
Molecular tests ‐ other Ct thresholds for 'higher' viral load
19
19. Test
Molecular tests ‐ other Ct thresholds for 'lower' viral load
20
20. Test
Molecular tests ‐ other sites
21
21. Test
Antigen tests ‐ direct comparisons
22
22. Test
AAZ ‐ COVID‐VIRO (CGIA)
23
23. Test
Abbott ‐ Panbio Covid‐19 Ag (CGIA)
24
24. Test
Becton Dickinson ‐ BD Veritor (LFA – method not specified)
25
25. Test
BIONOTE ‐ NowCheck COVID‐19 Ag (LFA – method not specified)
26
26. Test
Biosynex ‐ Biosynex COVID‐19 Ag BSS (CGIA)
27
27. Test
Coris Bioconcept ‐ COVID‐19 Ag Respi‐Strip (CGIA)
28
28. Test
E25Bio ‐ DART (NP) (CGIA)
29
29. Test
Fujirebio ‐ ESPLINE SARS‐CoV‐2 [LFA(ALP)]
30
30. Test
Inhouse (Bioeasy co‐author) ‐ n/a (FIA)
31
31. Test
Innova Medical Group ‐ Innova SARS‐CoV‐2 Ag (CGIA)
32
32. Test
Liming Bio‐Products ‐ StrongStep® COVID‐19 Ag (CGIA)
33
33. Test
Quidel Corporation ‐ SOFIA SARS Antigen (FIA)
34
34. Test
RapiGEN ‐ BIOCREDIT COVID‐19 Ag (CGIA)
35
35. Test
Roche ‐ SARS‐CoV‐2 (LFA – method not specified)
36
36. Test
Savant Biotech ‐ Huaketai SARS‐CoV‐2 N Protein (LFA – method not specified)
37
37. Test
SD Biosensor ‐ STANDARD F COVID‐19 Ag (FIA)
38
38. Test
SD Biosensor ‐ STANDARD Q COVID‐19 Ag (CGIA)
39
39. Test
Shenzhen Bioeasy Biotech ‐ 2019‐nCoV Ag (FIA)
40
40. Test
Abbott ‐ ID NOW (Isothermal PCR)
41
41. Test
Cepheid ‐ Xpert Xpress (Automated RT‐PCR)
42
42. Test
DNANudge – COVID Nudge (Automated RT‐PCR)
43
43. Test
DRW ‐ SAMBA II (Automated RT‐PCR)
44
44. Test
Mesa Biotech ‐ Accula (other molecular)
45
45. Test
Antigen test evaluations ‐ Single group design
46
46. Test
Antigen test evaluations ‐ Two group design
47
47. Test
Antigen test evaluations ‐ Unclear design
48
48. Test
Molecular test evaluations ‐ Single group design
49
49. Test
Molecular test evaluations ‐ Two group design
50
50. Test
Molecular test evaluations ‐ Unclear design

Update of

References

References to studies included in this review

Albert 2020 {published data only}
    1. Albert E, Torres I, Bueno F, Huntley D, Molla E, Fernández-Fuentes MÁ, et al. Field evaluation of a rapid antigen test (Panbio™ COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centers. Clinical Microbiology and Infection 2020 Nov 13 [Epub ahead of print]. [DOI: 10.1016/j.cmi.2020.11.004] - DOI - PMC - PubMed
    1. Albert E, Torres I, Bueno F, Huntley D, Molla E, Fernández-Fuentes MÁ, et al. Field evaluation of a rapid antigen test (Panbio™ COVID-19 Ag Rapid Test Device) for the diagnosis of COVID-19 in primary healthcare centers. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Alemany 2020 {published data only}
    1. Alemany A, Baro B, Ouchi D, Ubals M, Corbacho-Monné M, Vergara-Alert J, et al. Analytical and clinical performance of the Panbio COVID-19 Antigen-Detecting Rapid Diagnostic Test. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Assennato 2020 {published data only}
    1. Assennato SM, Ritchie AV, Nadala C, Goel N, Tie C, Nadala LM, et al. Performance evaluation of the SAMBA II SARS-CoV-2 test for point-of-care detection of SARS-CoV-2. Journal of Clinical Microbiology 2020;59:e01262-20. [DOI: ] - PMC - PubMed
    1. Assennato SM, Ritchie AV, Nadala C, Goel N, Zhang H, Datir R, et al. Performance evaluation of the point-of-care SAMBA II SARS-CoV-2 test for detection of SARS-CoV-2. medRxiv [Preprint] 24 May 2020. [DOI: 10.1101/2020.05.24.20100990] - DOI - PMC - PubMed
Billaud 2020 {published data only}
    1. Billaud G, Gaymard A, Lina B, Laboratoire de Virologie des HCL CNR des virus des infections respiratoires. Evaluation du Test Antigénique ABBOTT SARS-COV2 ABBOT. Lyon, France: SFM (French Society of Microbiology), 2020.
Blairon 2020 {published data only}
    1. Blairon L, Wilmet A, Beukinga I, Tre-Hardy M. Implementation of rapid SARS-CoV-2 antigenic testing in a laboratory without access to molecular methods: experiences of a general hospital. Journal of Clinical Virology 2020;129:104472. [DOI: 10.1016/j.jcv.2020.104472] - DOI - PMC - PubMed
Broder 2020 {published data only}
    1. Broder K, Babiker A, Myers C, White T, Jones H, Cardella J, et al. Test agreement between Roche cobas 6800 and Cepheid GeneXpert Xpress SARS-CoV-2 assays at high cycle threshold ranges. Journal of Clinical Microbiology 2020;58:e01187-20. [DOI: 10.1128/JCM.01187-20] - DOI - PMC - PubMed
    1. Broder KJ, Babiker A, Myers C, White T, Jones H, Cardella J, et al. Test agreement between Roche cobas 6800 and Cepheid GeneXpert Xpress SARS-CoV-2 assays at high cycle threshold ranges. bioRxiv [Preprint] 5 May 2020:1-13. [DOI: 10.1101/2020.05.05.078501] - DOI - PMC - PubMed
Cerutti 2020 {published data only}
    1. Cerutti F, Burdino E, Milia MG, Allice T, Gregori G, Bruzzone B, et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: evaluation of the SD-Biosensor antigen test for SARS-CoV-2. Journal of Clinical Virology 2020;132:104654. - PMC - PubMed
Chen 2020a {published data only}
    1. Chen JH, Yip CC, Poon RW, Chan KH, Cheng VC, Hung IF, et al. Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2. Emerging Microbes and Infections 2020;9(1):1356-9. - PMC - PubMed
Collier 2020 {published data only}
    1. Collier DA, Assennato SM, Sithole N, Sharrocks K, Ritchie A, Ravji P, et al. Rapid point of care nucleic acid testing for SARS-CoV-2 in hospitalised patients: a clinical trial and implementation study. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Courtellemont 2020 {published data only}
    1. Courtellemont L, Guinard J, Guillaume C, Giaché S, Rzepecki V, Seve A, et al. Real-life performance of a novel antigen detection test on nasopharyngeal specimens for SARS-CoV-2 infection diagnosis: a prospective study. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Cradic 2020(a) {published data only}
    1. Cradic K, Lockhart M, Ozbolt P, Fatica L, Landon L, Lieber M, et al. Clinical evaluation and utilization of multiple molecular in vitro diagnostic assays for the detection of SARS-CoV-2. American Journal of Clinical Pathology 2020;154(2):201-7. - PMC - PubMed
Cradic 2020(b) {published data only}
    1. Cradic K, Lockhart M, Ozbolt P, Fatica L, Landon L, Lieber M, et al. Clinical evaluation and utilization of multiple molecular in vitro diagnostic assays for the detection of SARS-CoV-2. American Journal of Clinical Pathology 2020;154(2):201-7. - PMC - PubMed
Diao 2020 {published data only}
    1. Diao B, Wen K, Chen J, Liu Y, Yuan Z, Han C, et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. medRxiv [Preprint] 10 March 2020:1-13. [DOI: 10.1101/2020.03.07.20032524] - DOI
    1. Diao B, Wen K, Zhang J, Chen J, Han C, Chen Y, et al. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clin Microbiol Infect 2020 Oct 5 [Epub ahead of print]. [DOI: 10.1016/j.cmi.2020.09.057] - DOI - PMC - PubMed
Dust 2020 {published data only}
    1. Dust K, Hedley A, Nichol K, Stein D, Adam H, Karlowsky JA, et al. Comparison of commercial assays and laboratory developed tests for detection of SARS-CoV-2. Journal of Virological Methods 2020;285:113970. [DOI: 10.1016/j.jviromet.2020.113970] - DOI - PMC - PubMed
Fenollar 2020(a) {published data only}
    1. Fenollar F, Bouam A, Ballouche M, Fuster L, Prudent E, Colson P, et al. Evaluation of the Panbio Covid-19 rapid antigen detection test device for the screening of patients with COVID-19. Journal of Clinical Microbiology 2020. [DOI: 10.1128/JCM.02589-20] - DOI - PMC - PubMed
Fenollar 2020(b) {published data only}
    1. Fenollar F, Bouam A, Ballouche M, Fuster L, Prudent E, Colson P, et al. Evaluation of the Panbio Covid-19 rapid antigen detection test device for the screening of patients with COVID-19. Journal of Clinical Microbiology 2020. [DOI: 10.1128/JCM.02589-20] - DOI - PMC - PubMed
FIND 2020a {published data only}
    1. Foundation for Innovative New Diagnostics (FIND). Evaluation of Bionote, Inc. NowCheck COVID-19 Ag Test - External Report. Switzerland: FIND, 2020.
FIND 2020b {published data only}
    1. Foundation for Innovative New Diagnostics (FIND). Evaluation of Abbott Panbio COVID-19 Ag Rapid Test Device - External Report. Switzerland: FIND, 2020.
FIND 2020c (BR) {published data only}
    1. Foundation for Innovative New Diagnostics (FIND). Evaluation of SD Biosensor, Inc. STANDARD Q COVID-19 Ag Test - External Report. Switzerland: FIND, 2020.
FIND 2020c (CH) {published data only}
    1. Foundation for Innovative New Diagnostics (FIND). Evaluation of SD Biosensor, Inc. STANDARD Q COVID-19 Ag Test - External Report. Switzerland: FIND, 2020.
FIND 2020d (BR) {published data only}
    1. Foundation for Innovative New Diagnostics (FIND). Evaluation of SD Biosensor, Inc. STANDARD F COVID-19 Ag FIA - External Report. Switzerland: FIND, 2020.
FIND 2020d (DE) {published data only}
    1. Foundation for Innovative New Diagnostics (FIND). Evaluation of SD Biosensor, Inc. STANDARD F COVID-19 Ag FIA - External Report. Switzerland: FIND, 2020.
FIND 2020e (BR) {published data only}
    1. Foundation for Innovative New Diagnostics (FIND). Evaluation of RapiGEN Inc. BIOCREDIT COVID-19 Ag - External Report. Switzerland: FIND, 2020.
FIND 2020e (DE) {published data only}
    1. Foundation for Innovative New Diagnostics (FIND). Evaluation of RapiGEN Inc. BIOCREDIT COVID-19 Ag - External Report. Switzerland: FIND, 2020.
Fourati 2020 [A] {published data only}
    1. Fourati S, Audureau E, Chevaliez S, Pawlotsky JM. Évaluation de la performance diagnostique des tests rapides d’orientation diagnostique antigéniques COVID-19. France: AP-HP Hopitaux universitaires Henri-Mondor, 2020.
Fourati 2020 [B] {published data only}
    1. Fourati S, Audureau E, Chevaliez S, Pawlotsky JM. Évaluation de la performance diagnostique des tests rapides d’orientation diagnostique antigéniques COVID-19. France: AP-HP Hopitaux universitaires Henri-Mondor, 2020.
Fourati 2020 [C] {published data only}
    1. Fourati S, Audureau E, Chevaliez S, Pawlotsky JM. Évaluation de la performance diagnostique des tests rapides d’orientation diagnostique antigéniques COVID-19. France: AP-HP Hopitaux universitaires Henri-Mondor, 2020.
Fourati 2020 [D] {published data only}
    1. Fourati S, Audureau E, Chevaliez S, Pawlotsky JM. Évaluation de la performance diagnostique des tests rapides d’orientation diagnostique antigéniques COVID-19. France: AP-HP Hopitaux universitaires Henri-Mondor, 2020.
Fourati 2020 [E] {published data only}
    1. Fourati S, Audureau E, Chevaliez S, Pawlotsky JM. Évaluation de la performance diagnostique des tests rapides d’orientation diagnostique antigéniques COVID-19. France: AP-HP Hopitaux universitaires Henri-Mondor, 2020.
Ghofrani 2020 {published data only}
    1. Ghofrani M, Casas MT, Pelz RK, Kroll C, Blum N, Foster SD. Performance characteristics of the ID NOW COVID-19 assay: a regional health care system experience. medRxiv [Preprint] 2020. [DOI: ]
Gibani 2020 {published data only}
    1. Gibani MM, Toumazou C, Sohbati M, Sahoo R, Karvela M, Hon TK, et al. Assessing a novel, lab-free, point-of-care test for SARS-CoV-2 (CovidNudge): a diagnostic accuracy study. Lancet Microbe 2020;1(7):E300-E307. [DOI: ] - PMC - PubMed
Goldenberger 2020 {published data only}
    1. Goldenberger D, Leuzinger K, Sogaard KK, Gosert R, Roloff T, Naegele K, et al. Brief validation of the novel GeneXpert Xpress SARS-CoV-2 PCR assay. Journal of Virologica. Methods 2020;284:113925. - PMC - PubMed
Gremmels 2020(a) {published data only}
    1. Gremmels H, Winkel BM, Schuurman R, Rosingh A, Rigter NA, Rodriguez O, et al. Real-life validation of the Panbio COVID-19 Antigen Rapid Test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
    1. Gremmels H, Winkel BM, Schuurman R, Rosingh A, Rigter NA, Rodriguez O, et al. Real-life validation of the PanbioTM COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. EClinicalMedicine 2021;31:100677. [DOI: ] - PMC - PubMed
Gremmels 2020(b) {published data only}
    1. Gremmels H, Winkel BM, Schuurman R, Rosingh A, Rigter NA, Rodriguez O, et al. Real-life validation of the PanbioTM COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Gupta 2020 {published data only}
    1. Gupta A, Khurana S, Das R, Srigyan D, Singh A, Mittal A, et al. Rapid chromatographic immunoassay-based evaluation of COVID-19: a cross-sectional, diagnostic test accuracy study & its implications for COVID-19 management in India. Indian Journal of Medical Research 2020 Oct 31 [Epub ahead of print]. [DOI: 10.4103/ijmr.IJMR_3305_20] - DOI - PMC - PubMed
Harrington 2020 {published data only}
    1. Harrington A, Cox B, Snowdon J, Bakst J, Ley E, Grajales P, et al. Comparison of Abbott ID NOW and Abbott m2000 methods for the detection of SARS-CoV-2 from nasopharyngeal and nasal swabs from symptomatic patients. Journal of Clinical Microbiology 2020;58(8):e00798-20. [DOI: 10.1128/JCM.00798-20.] - DOI - PMC - PubMed
Hogan 2020 {published data only}
    1. Hogan CA, Garamani N, Lee AS, Tung JK, Sahoo MK, Huang C, et al. Comparison of the Accula SARS-CoV-2 test with a laboratory-developed assay for detection of SARS-CoV-2 RNA in clinical nasopharyngeal specimens. bioRxiv [Preprint] 2020. [DOI: 10.1101/2020.05.12.092379v1] - DOI - PMC - PubMed
Hou 2020 {published data only}
    1. Hou H, Chen J, Wang Y, Lu Y, Zhu Y, Zhang B, et al. Multicenter evaluation of the Cepheid Xpert Xpress SARS-CoV-2 Assay for the detection of SARS-CoV-2 in oropharyngeal swab specimens. Journal of Clinical Microbiology 2020. [DOI: ] - PMC - PubMed
Jin 2020 {published data only}
    1. Jin R, Pettengill MA, Hartnett NL, Auerbach HE, Peiper SC, Wang Z. Commercial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) molecular assays: superior analytical sensitivity of cobas SARS-CoV-2 relative to NxTAG Cov Extended Panel and ID NOW COVID-19 test. Archives of Pathology and Laboratory Medicine 2020;144(11):1303-10. - PubMed
Jokela 2020 {published data only}
    1. Jokela P, Jääskeläinen AE, Jarva H, Holma T, Ahava M, Mannonen L, et al. SARS-CoV-2 sample-to-answer nucleic acid testing in a tertiary care emergency department: evaluation and utility. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
    1. Jokela P, Jääskeläinen AE, Jarva H, Holma T, Ahava MJ, Mannonen L, et al. SARS-CoV-2 sample-to-answer nucleic acid testing in a tertiary care emergency department: evaluation and utility. Journal of Clinical Virology 2020;131:104614. - PMC - PubMed
Kruger 2020(a) {published data only}
    1. Krüger LJ, Gaeddert M, Köppel L, Brümmer LE, Gottschalk C, Miranda IB, et al. Evaluation of the accuracy, ease of use and limit of detection of novel, rapid, antigen-detecting point-of-care diagnostics for SARS-CoV-2. medRxiv [Preprint] 2020. [DOI: ]
Kruger 2020(b) {published data only}
    1. Krüger LJ, Gaeddert M, Köppel L, Brümmer LE, Gottschalk C, Miranda IB, et al. Evaluation of the accuracy, ease of use and limit of detection of novel, rapid, antigen-detecting point-of-care diagnostics for SARS-CoV-2. medRxiv [Preprint] 2020. [DOI: ]
Kruger 2020(c) {published data only}
    1. Krüger LJ, Gaeddert M, Köppel L, Brümmer LE, Gottschalk C, Miranda IB, et al. Evaluation of the accuracy, ease of use and limit of detection of novel, rapid, antigen-detecting point-of-care diagnostics for SARS-CoV-2. medRxiv [Preprint] 2020. [DOI: ]
Lambert‐Niclot 2020 {published data only}
    1. Lambert-Niclot S, Cuffel A, Le Pape S, Vauloup-Fellous C, Morand-Joubert L, Roque-Afonso AM, et al. Evaluation of a rapid diagnostic assay for detection of SARS CoV-2 antigen in nasopharyngeal swab. Journal of Clinical Microbiology 2020;58(8):e00977-20. [DOI: 10.1128/JCM.00977-20] - DOI - PMC - PubMed
Lephart 2020 [A] {published data only}
    1. Lephart PR, Bachman M, LeBar W, McClellan S, Barron K, Schroeder L, et al. Comparative study of four SARS-CoV-2 nucleic acid amplification test (NAAT) platforms demonstrates that ID NOW performance is impaired substantially by patient and specimen type. bioRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Lephart 2020 [B] {published data only}
    1. Lephart PR, Bachman M, LeBar W, McClellan S, Barron K, Schroeder L, et al. Comparative study of four SARS-CoV-2 nucleic acid amplification test (NAAT) platforms demonstrates that ID NOW performance is impaired substantially by patient and specimen type. bioRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Lieberman 2020 {published data only}
    1. Lieberman JA, Pepper G, Naccache SN, Huang ML, Jerome KR, Greninger AL. Comparison of commercially available and laboratory developed assays for in vitro detection of SARS-CoV-2 in clinical laboratories. Journal of Clinical Microbiology 2020;58(8):e00821-20. [DOI: 10.1128/JCM.00821-20] - DOI - PMC - PubMed
Linares 2020 {published data only}
    1. Linares M, Pérez TR, Romanyk J, Pérez García F, Gómez-Herruz P, Arroyo T, et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
    1. Linares M, Pérez-Tanoira R, Carrero A, Romanyk J, Pérez-García F, Gómez-Herruz P, et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. Journal of Clinical Virology 2020;133:104659. - PMC - PubMed
Liotti 2020 {published data only}
    1. Liotti FM, Menchinelli G, Lalle E, Palucci I, Marchetti S, Colavita F, et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clinical Microbiology and Infection 2020 Sep 23 [Epub ahead of print]. [DOI: 10.1016/j.cmi.2020.09.030] - DOI - PMC - PubMed
Loeffelholz 2020 {published data only}
    1. Loeffelholz MJ, Alland D, Butler-Wu SM, Pandey U, Perno CF, Nava A, et al. Multicenter evaluation of the Cepheid Xpert Xpress SARS-CoV-2 test. Journal of Clinical Microbiology 2020;58(8):e00926-20. [DOI: 10.1128/JCM.00926-20] - DOI - PMC - PubMed
Mak 2020 {published data only}
    1. Mak GC, Cheng PK, Lau SS, Wong KK, Lau CS, Lam ET, et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. Journal of Clinical Virology 2020;129:104500. - PMC - PubMed
Mertens 2020 {published data only}
    1. Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, et al. Development and potential usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a pandemic context. Frontiers in Medicine (Lausanne) 2020;7:225. - PMC - PubMed
    1. Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, et al. Development and potential usefulness of the COVID-19 Ag Respi-Strip diagnostic assay in a pandemic context. medRxiv [Preprint] 24 April 2020:1-29. [DOI: 10.1101/2020.04.24.20077776] - DOI - PMC - PubMed
Mitchell 2020 {published data only}
    1. Mitchell SL, George KS. Evaluation of the COVID19 ID NOW EUA assay. Journal of Clinical Virology 2020;128:104429. [DOI: 10.1016/j.jcv.2020.104429] - DOI - PMC - PubMed
Moore 2020 {published data only}
    1. Moore NM, Li H, Schejbal D, Lindsley J, Hayden M. Comparison of two commercial molecular tests and a laboratory-developed modification of the CDC 2019-nCOV RT-PCR assay for the qualitative detection of SARS-CoV-2 from upper respiratory tract specimens. medRxiv [Preprint] 2020:1-22. [DOI: 10.1101/2020.05.02.20088740] - DOI - PMC - PubMed
    1. Moore NM, Li H, Schejbal D, Lindsley J, Hayden MK. Comparison of two commercial molecular tests and a laboratory-developed modification of the CDC 2019-nCoV RT-PCR assay for the detection of SARS-CoV-2. Journal of Clinical Microbiology 2020;58:e00938-20. [DOI: ] - PMC - PubMed
Moran 2020 {published data only}
    1. Moran A, Beavis KG, Matushek SM, Ciaglia C, Francois N, Tesic V, et al. The detection of SARS-CoV-2 using the Cepheid Xpert Xpress SARS-CoV-2 and Roche cobas SARS-CoV-2 assays. Journal of Clinical Microbiology 2020;58(8):e00772-20. [DOI: 10.1128/JCM.00772-20] - DOI - PMC - PubMed
Nagura‐Ikeda 2020 {published data only}
    1. Nagura-Ikeda M, Imai K, Tabata S, Miyoshi K, Murahara N, Mizuno T, et al. Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loop-mediated isothermal amplification, and a rapid antigen test to diagnose COVID-19. Journal of Clinical Microbiology 2020;58(9):e01438-20. [DOI: 10.1128/JCM.01438-20] - DOI - PMC - PubMed
Nash 2020 {published data only}
    1. Nash B, Badea A, Reddy A, Bosch M, Salcedo N, Gomez AR, et al. The impact of high frequency rapid viral antigen screening on COVID-19 spread and outcomes: a validation and modeling study. medRxiv [Preprint] 2020. [DOI: ]
PHE 2020(a) {published data only}
    1. Peto T. COVID-19: rapid antigen detection for SARS-CoV-2 by lateral flow assay: a national systematic evaluation for mass-testing. medRxiv [Preprint] 2021. [DOI: ] - PMC - PubMed
    1. Public Health England (PHE). Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell: rapid evaluation of lateral flow viral antigen detection devices (LFDs) for mass community testing. Public Health England, 2020.
PHE 2020(b) {published data only}
    1. Public Health England (PHE). Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell: rapid evaluation of lateral flow viral antigen detection devices (LFDs) for mass community testing. Public Health England, 2020.
PHE 2020(c) [non‐HCW tested] {published data only}
    1. Public Health England (PHE). Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell: rapid evaluation of lateral flow viral antigen detection devices (LFDs) for mass community testing. Public Health England, 2020.
PHE 2020(d) [HCW tested] {published data only}
    1. Public Health England (PHE). Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell: rapid evaluation of lateral flow viral antigen detection devices (LFDs) for mass community testing. Public Health England, 2020.
PHE 2020(d) [Lab tested] {published data only}
    1. Public Health England (PHE). Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell: rapid evaluation of lateral flow viral antigen detection devices (LFDs) for mass community testing. Public Health England, 2020.
PHE 2020(e) {published data only}
    1. Public Health England (PHE). Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell: rapid evaluation of lateral flow viral antigen detection devices (LFDs) for mass community testing. Public Health England, 2020.
Porte 2020a {published data only}
    1. Porte L, Legarraga P, Vollrath V, Aguilera X, Munita JM, Araos R, et al. Evaluation of novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. International Journal of Infectious Diseases 2020;99:328-33. - PMC - PubMed
    1. Porte L, Legarraga P, Vollrath V, Aguilera X, Munita JM, Araos R, et al. Evaluation of novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. papers.ssrn.com/abstract=3569871 [Preprint] 14 April 2020;(dx.doi.org/10.2139/ssrn.3569871):1-23. [DOI: ] - PMC - PubMed
Porte 2020b [A] {published data only}
    1. Porte L, Legarraga P, Iruretagoyena M, Vollrath V, Pizarro G, Munita JM, et al. Rapid SARS-CoV-2 antigen detection by immunofluorescence – a new tool to detect infectivity. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.10.04.20206466] - DOI
Porte 2020b [B] {published data only}
    1. Porte L, Legarraga P, Iruretagoyena M, Vollrath V, Pizarro G, Munita JM, et al. Rapid SARS-CoV-2 antigen detection by immunofluorescence – a new tool to detect infectivity. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.10.04.20206466] - DOI
Rhoads 2020 {published data only}
    1. Rhoads DD, Cherian SS, Roman K, Stempak LM, Schmotzer CL, Sadri N. Comparison of Abbott ID NOW, Diasorin Simplexa, and CDC FDA EUA methods for the detection of SARS-CoV-2 from nasopharyngeal and nasal swabs from individuals diagnosed with COVID-19. Journal of Clinical Microbiology 2020;58(8):e00760-20. [DOI: 10.1128/JCM.00760-20] - DOI - PMC - PubMed
Schildgen 2020 [A] {published data only}
    1. Schildgen V, Demuth S, Lüsebrink J, Schildgen O. Limits and opportunities of SARS-CoV-2 antigen rapid tests – an experience based perspective. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.09.22.20199372] - DOI - PMC - PubMed
Schildgen 2020 [B] {published data only}
    1. Schildgen V, Demuth S, Lüsebrink J, Schildgen O. Limits and opportunities of SARS-CoV-2 antigen rapid tests – an experience based perspective. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.09.22.20199372] - DOI - PMC - PubMed
Schildgen 2020 [C] {published data only}
    1. Schildgen V, Demuth S, Lüsebrink J, Schildgen O. Limits and opportunities of SARS-CoV-2 antigen rapid tests – an experience based perspective. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.09.22.20199372] - DOI - PMC - PubMed
Scohy 2020 {published data only}
    1. Scohy A, Anantharajah A, Bodeus M, Kabamba-Mukadi B, Verroken A, Rodriguez-Villalobos H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. Journal of Clinical Virology 2020;129:104455. [DOI: 10.1016/j.jcv.2020.104455] - DOI - PMC - PubMed
Shrestha 2020 {published data only}
    1. Shrestha B, Neupane AK, Pant S, Shrestha A, Bastola, A. Sensitivity and specificity of lateral flow antigen test kits for COVID-19 in asymptomatic population of quarantine centre of Province 3. Kathmandu University Medical Journal 2020;18(70):36-9. - PubMed
Smithgall 2020 [A] {published data only}
    1. Smithgall MC, Scherberkova I, Whittier S, Green D. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche cobas for the rapid detection of SARS-CoV-2. bioRxiv [Preprint] 25 April 2020:1-16. [DOI: 10.1101/2020.04.22.055327] - DOI - PMC - PubMed
    1. Smithgall MC, Scherberkova I, Whittier S, Green DA. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the rapid detection of SARS-CoV-2. Journal of Clinical Virology 2020;128:104428. [DOI: 10.1016/j.jcv.2020.104428] - DOI - PMC - PubMed
Smithgall 2020 [B] {published data only}
    1. Smithgall MC, Scherberkova I, Whittier S, Green DA. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the rapid detection of SARS-CoV-2. Journal of Clinical Virology 2020;128:104428. [DOI: 10.1016/j.jcv.2020.104428] - DOI - PMC - PubMed
SoRelle 2020 {published data only}
    1. SoRelle JA, Mahimainathan L, McCormick-Baw C, Cavuoti D, Lee F, Thomas A, et al. Saliva for use with a point of care assay for the rapid diagnosis of COVID-19. Clinica Chimica Acta 2020;510:685-6. - PMC - PubMed
    1. SoRelle Jeffrey, Mahimmainathan Lenin, McCormick-Baw Clare, Cavuoti Dominick, Lee Franceca, Bararia Anjali, et al. Evaluation of symptomatic patient saliva as a sample type for the Abbott ID NOW COVID-19 assay. medRxiv [Preprint] 2020. [DOI: ]
Stevens 2020 {published data only}
    1. Stevens B, Hogan CA, Sahoo MK, Huang C, Garamani N, Zehnder J, et al. Comparison of a point-of-care assay and a high-complexity assay for detection of SARS-CoV-2 RNA. Journal of Applied Laboratory Medicine 2020;5(6):1307-12. - PMC - PubMed
Szymczak 2020 {published data only}
    1. Szymczak WA, Goldstein DY, Orner EP, Fecher RA, Yokoda RT, Skalina KA, et al. Utility of stool PCR for the diagnosis of COVID-19: comparison of two commercial platforms. Journal of Clinical Microbiology 2020;58:e01369-20. [DOI: ] - PMC - PubMed
Takeda 2020 {published data only}
    1. Takeda Y, Mori M, Omi K. SARS-CoV-2 qRT-PCR Ct value distribution in Japan and possible utility of rapid antigen testing kit. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.06.16.20131243] - DOI
Thwe 2020 {published data only}
    1. Thwe PM, Ren P. How many are we missing with ID NOW COVID-19 assay using direct nasopharyngeal swabs? Findings from a mid-sized academic hospital clinical microbiology laboratory. Diagnostic Microbiology and Infectious Disease 2020;98(2):115123. [DOI: 10.1016/j.diagmicrobio.2020.115123] - DOI - PMC - PubMed
Van der Moeren 2020(a) {published data only}
    1. Van der Moeren N, Zwart VF, Lodder EB, Van den Bijllaardt W, Van Esch HR, Stohr JJ, et al. Performance evaluation of a SARS-CoV-2 rapid antigen test: test performance in the community in the Netherlands. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.10.19.20215202] - DOI
Van der Moeren 2020(b) {published data only}
    1. Van der Moeren N, Zwart VF, Lodder EB, Van den Bijllaardt W, Van Esch HR, Stohr JJ, et al. Performance evaluation of a SARS-CoV-2 rapid antigen test: test performance in the community in the Netherlands. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.10.19.20215202] - DOI
Veyrenche 2020 {published data only}
    1. Veyrenche N, Bollore K, Pisoni A, Bedin A-S, Mondain A-M, Ducos J, et al. Diagnosis value of SARS-CoV-2 antigen/antibody combined testing using rapid diagnostic tests at hospital admission. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.09.19.20197855] - DOI - PMC - PubMed
Weitzel 2020 [A] {published data only}
    1. Weitzel T, Legarraga P, Iruretagoyena M, Pizarro G, Vollrath V, Araos R, et al. Head-to-head comparison of four antigen-based rapid detection tests for the diagnosis of SARS-CoV-2 in respiratory samples. bioRxiv [Preprint] 30 May 2020:1-21. [DOI: 10.1101/2020.05.27.119255] - DOI - PMC - PubMed
    1. Weitzel T, Legarraga P, Iruretagoyena M, Pizarro G, Vollrath V, Porte L, et al. Comparative evaluation of four rapid SARS-CoV-2 antigen detection tests using universal transport medium. Travel Medicine and Infectious Diseases 2020 Dec 2 [Epub ahead of print]:101942. [DOI: 10.1016/j.tmaid.2020.101942] - DOI - PMC - PubMed
Weitzel 2020 [B] {published data only}
    1. Weitzel T, Legarraga P, Iruretagoyena M, Pizarro G, Vollrath V, Araos R, et al. Head-to-head comparison of four antigen-based rapid detection tests for the diagnosis of SARS-CoV-2 in respiratory samples. bioRxiv [Preprint] 30 May 2020:1-21. [DOI: 10.1101/2020.05.27.119255] - DOI - PMC - PubMed
Weitzel 2020 [C] {published data only}
    1. Weitzel T, Legarraga P, Iruretagoyena M, Pizarro G, Vollrath V, Araos R, et al. Head-to-head comparison of four antigen-based rapid detection tests for the diagnosis of SARS-CoV-2 in respiratory samples. bioRxiv [Preprint] 30 May 2020:1-21. [DOI: 10.1101/2020.05.27.119255] - DOI - PMC - PubMed
Weitzel 2020 [D] {published data only}
    1. Weitzel T, Legarraga P, Iruretagoyena M, Pizarro G, Vollrath V, Araos R, et al. Head-to-head comparison of four antigen-based rapid detection tests for the diagnosis of SARS-CoV-2 in respiratory samples. bioRxiv [Preprint] 30 May 2020:1-21. [DOI: 10.1101/2020.05.27.119255] - DOI - PMC - PubMed
Wolters 2020 {published data only}
    1. Wolters F, Van de Bovenkamp J, Van den Bosch B, Van den Brink S, Broeders M, Chung NH, et al. Multi-center evaluation of Cepheid Xpert(R) Xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic. Journal of Clinical Virology 2020;128:104426. [DOI: 10.1016/j.jcv.2020.104426] - DOI - PMC - PubMed
Wong 2020 {published data only}
    1. Wong RC, Wong AH, Ho YI, Leung EC, Lai RW. Evaluation on testing of deep throat saliva and lower respiratory tract specimens with Xpert Xpress SARS-CoV-2 assay. Journal of Clinical Virology 2020;131:104593. [DOI: 10.1016/j.jcv.2020.104593 ] - PMC - PubMed
Young 2020 {published data only}
    1. Young S, Taylor S, Cammarata C, Roger-Dalbert C, Montano A, Griego-Fullbright C, et al. Clinical evaluation of BD Veritor SARS-CoV-2 point-of-care test performance compared to PCR-based testing and versus the Sofia 2 SARS Antigen point-of-care test. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.09.01.20185777] - DOI - PMC - PubMed
    1. Young S, Taylor SN, Cammarata CL, Varnado KG, Roger-Dalbert C, Montano A, et al. Clinical evaluation of BD Veritor SARS-CoV-2 point-of-care test performance compared to PCR-based testing and versus the Sofia 2 SARS Antigen point-of-care test. Journal of Clinical Microbiology 2020. [DOI: 10.1128/JCM.02338-20] - DOI - PMC - PubMed
Zhen 2020 [A] {published data only}
    1. Zhen W, Smith E, Manji R, Schron D, Berry GJ. Clinical evaluation of three sample-to-answer platforms for the detection of SARS-CoV-2. Journal of Clinical Microbiology 2020;58(8):e00783-20. [DOI: 10.1128/JCM.00783-20] - DOI - PMC - PubMed
Zhen 2020 [B] {published data only}
    1. Zhen W, Smith E, Manji R, Schron D, Berry GJ. Clinical evaluation of three sample-to-answer platforms for the detection of SARS-CoV-2. Journal of Clinical Microbiology 2020;58(8):e00783-20. [DOI: 10.1128/JCM.00783-20] - DOI - PMC - PubMed

References to studies excluded from this review

Ai 2020 {published data only}
    1. Ai JW, Zhang HC, Xu T, Wu J, Zhu M, Yu YQ, et al. Optimizing diagnostic strategy for novel coronavirus pneumonia, a multi-center study in Eastern China. medRxiv [Preprint] 17 February 2020:1-18. [DOI: 10.1101/2020.02.13.20022673] - DOI
Anahtar 2020 {published data only}
    1. Anahtar MN, McGrath GE, Rabe BA, Tanner NA, White BA, Lennerz JK, et al. Clinical assessment and validation of a rapid and sensitive SARS-CoV-2 test using reverse-transcription loop-mediated isothermal amplification. medRxiv [Preprint] 18 May 2020:1-22. [DOI: 10.1101/2020.05.12.20095638] - DOI - PMC - PubMed
Ar Gouilh 2020 {published data only}
    1. Ar Gouilh M, Cassier R, Maille E, Schanen C, Rocque L-M, Vabret Astrid. An easy, reliable and rapid SARS-CoV2 RT-LAMP based test for Point-of-Care and diagnostic lab. medRxiv [Preprint] 2020. [DOI: ]
Arizti‐Sanz 2020 {published data only}
    1. Arizti-Sanz J, Freije CA, Stanton AC, Boehm CK, Petros BA, Siddiqui S, et al. Integrated sample inactivation, amplification, and Cas13-based detection of SARS-CoV-2. bioRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Arumugam 2020 {published data only}
    1. Arumugam A, Faron ML, Yu P, Markham C, Wong S. A rapid COVID-19 RT-PCR detection assay for low resource settings. bioRxiv [Preprint] 30 April 2020:1-13. [DOI: 10.1101/2020.04.29.069591] - DOI - PubMed
Avetyan 2020 {published data only}
    1. Avetyan D, Chavushyan A, Ghazaryan H, Melkonyan A, Stepanyan A, Zakharyan R, et al. SARS-CoV-2 detection by extraction-free qRT-PCR for massive and rapid COVID-19 diagnosis during a pandemic. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Azhar 2020 {published data only}
    1. Azhar M, Phutela R, Kumar M, Ansari AH, Rauthan R, Gulati S, et al. Rapid, accurate, nucleobase detection using FnCas9. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Azzi 2020 {published data only}
    1. Azzi L, Baj A, Alberio T, Lualdi M, Veronesi G, Carcano G, et al. Rapid salivary test suitable for a mass screening program to detect SARS-CoV-2: a diagnostic accuracy study. Journal of Infection 2020;81(3):e75-8. - PMC - PubMed
Baek 2020 {published data only}
    1. Baek YH, Um J, Antigua KJ, Park JH, Kim Y, Oh S, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerging Microbes & Infections 2020;9(1):998-1007. - PMC - PubMed
Barra 2020 {published data only}
    1. Barra GB, Ticiane Henriques SR, Goes MP, Henriques JR, Nery LF. Analytical sensibility and specificity of two RT-qPCR protocols for SARS-CoV-2 detection performed in an automated workflow. medRxiv [Preprint] 10 March 2020:1-5. [DOI: 10.1101/2020.03.07.20032326] - DOI - PMC - PubMed
Basu 2020 {published data only}
    1. Basu A, Zinger T, Inglima K, Woo KM, Atie O, Yurasits L, et al. Performance of Abbott ID NOW COVID-19 rapid nucleic acid amplification test in nasopharyngeal swabs transported in viral media and dry nasal swabs, in a New York City academic institution. Journal of Clinical Microbiology 2020;58(8):e01136-20. [DOI: 10.1128/JCM.01136-20] - DOI - PMC - PubMed
Behrmann 2020 {published data only}
    1. Behrmann O, Bachmann I, Spiegel M, Schramm M, El Wahed AA, Dobler G, et al. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (exo-IQ). Clinical Chemistry 8 May 2020 [Epub ahead of print]:hvaa116. [DOI: 10.1093/clinchem/hvaa116] - DOI - PMC - PubMed
Bokelmann 2020 {published data only}
    1. Bokelmann L, Nickel O, Maricic T, Paabo S, Meyer M, Borte S, et al. Rapid, reliable, and cheap point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP (Cap-iLAMP). medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Bordi 2020 {published data only}
    1. Bordi L, Piralla A, Lalle E, Giardina F, Colavita F, Tallarita M, et al. Rapid and sensitive detection of SARS-CoV-2 RNA using the Simplexa COVID-19 direct assay. Journal of Clinical Virology 2020;128:104416. - PMC - PubMed
Brandsma 2020 {published data only}
    1. Brandsma E, Verhagen HJ, Van de Laar TJ, Claas EC, Cornelissen M, Van den Akker E. Rapid, sensitive and specific SARS coronavirus-2 detection: a multi-center comparison between standard qRT-PCR and CRISPR based DETECTR. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Broughton 2020 {published data only}
    1. Broughton JP, Deng X, Yu G, Fasching CL, Singh J, Streithorst J, et al. Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay. medRxiv [Preprint] 27 March 2020:1-28. [DOI: 10.1101/2020.03.06.20032334] - DOI
Bull 2020 {published data only}
    1. Bull RA, Adikari TN, Ferguson JM, Hammond JM, Stevanovski I, Beukers AG, et al. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nature Communications 2020;11(1):6272. - PMC - PubMed
Bulterys 2020 {published data only}
    1. Bulterys PL, Garamani N, Stevens B, Sahoo MK, Huang C, Hogan CA, et al. Comparison of a laboratory-developed test targeting the envelope gene with three nucleic acid amplification tests for detection of SARS-CoV-2. Journal of Clinical Virology 2020;129:104427. - PMC - PubMed
Callahan 2020a {published data only}
    1. Callahan CJ, Lee R, Zulauf K, Tamburello L, Smith KP, Previtera J, et al. Open development and clinical validation of multiple 3D-printed sample-collection swabs: rapid resolution of a critical COVID-19 testing bottleneck. medRxiv [Preprint] 7 May 2020:1-16. [EMBASE: 10.1101/2020.04.14.20065094] - PMC - PubMed
    1. Callahan CJ, Lee R, Zulauf KE, Tamburello L, Smith KP, Previtera J, et al. Open development and clinical validation of multiple 3D-printed nasopharyngeal collection swabs: rapid resolution of a critical COVID-19 testing bottleneck. Journal of Clinical Microbiology 2020;58(8):e00876-20. [DOI: 10.1128/JCM.00876-20] - DOI - PMC - PubMed
Callahan 2020b {published data only}
    1. Callahan C, Lee R, Lee G, Zulauf K E, Kirby J E, Arnaout R. Nasal-swab testing misses patients with low SARS-CoV-2 viral loads. medRxiv [Preprint] 2020. [DOI: ]
Chandler‐Brown 2020 {published data only}
    1. Chandler-Brown D, Bueno AM, Atay O, Tsao DS. A highly scalable and rapidly deployable RNA extraction-free COVID-19 assay by quantitative Sanger sequencing. medRxiv [Preprint] 10 April 2020:1-15. [DOI: 10.1101/2020.04.07.029199] - DOI
Chen 2020b {published data only}
    1. Chen Y, Shi Y, Chen Y, Yang Z, Wu H, Zhou Z, et al. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: a promising method in the point-of-care detection. Biosens Bioelectron 2020;169:112642. - PMC - PubMed
Chow 2020 {published data only}
    1. Chow FW, Chan TT, Tam AR, Zhao S, Yao W, Fung J, et al. A rapid, simple, inexpensive, and mobile colorimetric assay COVID-19-LAMP for mass on-site screening of COVID-19. International Journal of Molecular Sciences 2020;21(15):5380. - PMC - PubMed
CNR 2020 {published data only}
    1. Centre National de Référence des virus des infections respiratoires. Evaluation des performances analytiques du test VitaPCR™ SARS-CoV-2 Assay, BIOSYNEX. Lyon, France: SFM (French Society of Microbiology), 2020.
CNR 2020a {published data only}
    1. Centre National de Référence des virus des infections respiratoires. Résultats d’évaluation de la performance en analytique pour la détection du SARS-CoV-2 dans le cadre de l’épidémie de COVID-19 comparaison avec la technique de référence du CNR IPP. Lyon, France: SFM (French Society of Microbiology), 2020.
Colson 2020 {published data only}
    1. Colson P, Lagier JC, Baudoin JP, Bou Khalil J, La Scola B, Raoult D. Ultrarapid diagnosis, microscope imaging, genome sequencing, and culture isolation of SARS-CoV-2. European Journal of Clinical Microbiology & Infectious Diseases 2020;39(8):1601-3. - PMC - PubMed
Comar 2020 {published data only}
    1. Comar M, Brumat M, Concas MP, Argentini G, Bianco A, Bicego L, et al. COVID-19 experience: first Italian survey on healthcare staff members from a Mother-Child Research hospital using combined molecular and rapid immunoassays test. medRxiv [Preprint] 22 April 2020:1-12. [DOI: 10.1101/2020.04.19.20071563] - DOI
Comer 2020 {published data only}
    1. Comer SW, Fisk D. An extended laboratory validation study and comparative performance evaluation of the Abbott ID NOW COVID-19 Assay in a Coastal California tertiary care medical center. medRxiv [Preprint] 2020. [DOI: ]
Crone 2020 {published data only}
    1. Crone MA, Priestman M, Ciechonska M, Jensen K, Sharp DJ, Randell P, et al. A new role for biofoundries in rapid prototyping, development, and validation of automated clinical diagnostic tests for SARS-CoV-2. medRxiv [Preprint] 12 May 2020:1-31. [DOI: 10.1101/2020.05.02.20088344] - DOI
Curti 2020 {published data only}
    1. Curti L, Pereyra-Bonnet F, Gimenez CA. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12. bioRxiv [Preprint] 2 March 2020:1-10. [DOI: 10.1101/2020.02.29.971127] - DOI
Davda 2020 {published data only}
    1. Davda JN, Frank K, Prakash S, Purohit G, Vijayashankar DP, Vedagiri D, et al. An inexpensive RT-PCR endpoint diagnostic assay for SARS-CoV-2 using nested PCR: direct assessment of detection efficiency of RT-qPCR tests and suitability for surveillance. bioRxiv [Preprint] 2020. [DOI: ]
Ding 2020a {published data only}
    1. Ding X, Yin K, Li Z, Liu C. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus. bioRxiv [Preprint] 21 March 2020:1-19. [DOI: 10.1101/2020.03.19.998724] - DOI
Ding 2020b {published data only}
    1. Ding X, Yin K, Li Z, Lalla RV, Ballesteros E, Sfeir MM, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nature Communications 2020;11(1):4711. - PMC - PubMed
Dohla 2020 {published data only}
    1. Dohla M, Boesecke C, Schulte B, Diegmann C, Sib E, Richter E, et al. Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health 2020;182:170-2. - PMC - PubMed
Dong 2020 {published data only}
    1. Dong Y, Wu X, Li S, Lu R, Wan Z, Qin J, et al. Comparative evaluation of 19 reverse transcription loop-mediated isothermal amplification assays for detection of SARS-CoV-2. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
El‐Tholoth 2020 {published data only}
    1. El-Tholoth M, Bau HH, Song J. A single and two-stage, closed-tube, molecular test for the 2019 novel coronavirus (COVID-19) at home, clinic, and points of entry. chemRxiv [Preprint] 2020;19:19. [DOI: 10.26434/chemrxiv.11860137] - DOI
Farfan 2020 {published data only}
    1. Farfan MJ, Torres JP, Oryan M, Olivares M, Gallardo P, Salas C. Optimizing RT-PCR detection of SARS-CoV-2 for developing countries using pool testing. medRxiv [Preprint] 17 April 2020:1-10. [DOI: 10.1101/2020.04.15.20067199] - DOI - PubMed
FIND 2020f {published data only}
    1. FIND. FIND Evaluation of Coris BioConcept COVID-19 Ag Respi-Strip - External Report. Switzerland: FIND, 2020.
Fowler 2020 {published data only}
    1. Fowler VL, Armson B, Gonzales JL, Wise EL, Howson EL, Vincent-Mistiaen Z, et al. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 within nasopharyngeal and oropharyngeal swabs at Hampshire Hospitals NHS Foundation Trust. medRxiv [Preprint] 2020. [DOI: ]
Francis 2020 {published data only}
    1. Francis R, Le Bideau M, Jardot P, Grimaldier C, Raoult D, Khalil JY, et al. High speed large scale automated isolation of SARS-CoV-2 from clinical samples using miniaturized co-culture coupled with high content screening. bioRxiv [Preprint] 19 May 2020:1-23. [DOI: 10.1101/2020.05.14.097295] - DOI - PMC - PubMed
Freire‐Paspuel 2020a {published data only}
    1. Freire-Paspuel B, Vega-Marino P, Velez A, Cruz M, Bereguiain MA. High sensitivity CDC EUA SARS-CoV-2 kit-based End Point-PCR assay. medRxiv [Preprint] 18 May 2020:1-7. [DOI: 10.1101/2020.05.11.20098590] - DOI
Freire‐Paspuel 2020b {published data only}
    1. Freire-Paspuel B, Vega-Marino P, Velez A, Castillo P, Cruz M, Garcia-Bereguiain MA. Evaluation of nCoV-QS (MiCo BioMed) for RT-qPCR detection of SARS-CoV-2 from nasopharyngeal samples using CDC FDA EUA qPCR kit as a gold standard: An example of the need of validation studies. Journal of Clinical Virology 2020;128:104454. [DOI: 10.1016/j.jcv.2020.104454] - DOI - PMC - PubMed
Ganguli 2020 {published data only}
    1. Ganguli A, Mostafa A, Berger J, Aydin M, Sun F, Valera E, et al. Rapid isothermal amplification and portable detection system for SARS-CoV-2. bioRxiv [Preprint] 21 May 2020:1-31. [DOI: 10.1101/2020.05.21.108381] - DOI - PMC - PubMed
Giamarellos‐Bourboulis 2020 {published data only}
    1. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host & Microbe 2020;27(6):992-1000 e3. - PMC - PubMed
Gonzalez‐Gonzalez 2020a {published data only}
    1. Gonzalez-Gonzalez E, Lara-Mayorga IM, Rodriguez-Sanchez IP, Yee-de Leon F, Garcia-Rubio A, Garciamendez-Mijares CE, et al. Scaling diagnostics in times of COVID-19: rapid prototyping of 3D-printed water circulators for loop-mediated isothermal amplification (LAMP) and detection of SARS-CoV-2 virus. medRxiv [Preprint] 19 June 2020:1-39. [DOI: 10.1101/2020.04.09.20058651] - DOI
Gonzalez‐Gonzalez 2020b {published data only}
    1. Gonzalez-Gonzalez E, Trujillo-de Santiago G, Lara-Mayorga IM, Martinez-Chapa SO, Alvarez MM. Portable and accurate diagnostics for COVID-19: combined use of the miniPCR thermocycler and a well-plate reader for SARS-CoV-2 virus detection. PLoS One 2020;15(8):e0237418. - PMC - PubMed
Grant 2020 {published data only}
    1. Grant PR, Turner MA, Shin GY, Nastouli E, Levett LJ. Extraction-free COVID-19 (SARS-CoV-2) diagnosis by RT-PCR to increase capacity for national testing programmes during a pandemic. bioRxiv [Preprint] 9 April 2020:1-6. [DOI: ]
Hass 2020 {published data only}
    1. Hass KN, Bao M, He Q, Park M, Qin P, Du K. Integrated Micropillar Polydimethylsiloxane Accurate CRISPR Detection (IMPACT) system for rapid viral DNA sensing. bioRxiv [Preprint] 20 March 2020:1-10. [DOI: 10.1101/2020.03.17.994137] - DOI - PMC - PubMed
Herrera 2020 {published data only}
    1. Herrera V, Hsu V, Adewale A, Hendrix T, Johnson L, Kuhlman J, et al. Testing of healthcare workers exposed to COVID19 with rapid antigen detection. medRxiv [Preprint] 2020. [DOI: ]
Hirotsu 2020 {published data only}
    1. Hirotsu Y, Maejima M, Shibusawa M, Nagakubo Y, Hosaka K, Amemiya K, et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. International Journal of Infectious Diseases 2020;99:397-402. - PMC - PubMed
Hogan 2020a {published data only}
    1. Hogan CA, Sahoo MK, Huang C, Garamani N, Stevens B, Zehnder J, et al. Comparison of the Panther Fusion and a laboratory-developed test targeting the envelope gene for detection of SARS-CoV-2. Journal of Clinical Virology 2020;127:104383. - PMC - PubMed
Howson 2020 {published data only}
    1. Howson E, Kidd S, Sawyer J, Cassar C, Cross D, Lewis T, et al. Preliminary optimisation of a simplified sample preparation method to permit direct detection of SARS-CoV-2 within saliva samples using reverse-transcription loop-mediated isothermal amplification (RT-LAMP). medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Hu 2020 {published data only}
    1. Hu X, Deng Q, Li J, Chen J, Wang Z, Zhang X, et al. Development and clinical application of a rapid and sensitive loop-mediated isothermal amplification test for SARS-CoV-2 infection. medRxiv [Preprint] 29 May 2020:1-28. [DOI: 10.1101/2020.05.20.20108530] - DOI - PMC - PubMed
Huang 2020 {published data only}
    1. Huang WE, Lim B, Hsu CC, Xiong D, Wu W, Yu Y, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microbial Biotechnology 2020;13(4):950-61. - PMC - PubMed
Huang 2021 {published data only}
    1. Huang L, Ding L, Zhou J, Chen S, Chen F, Zhao C, et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosensors & Bioelectronics 2021;171:112685. - PMC - PubMed
James 2020 {published data only}
    1. James P, Stoddart D, Harrington ED, Beaulaurier J, Ly L, Reid SW, et al. LamPORE: rapid, accurate and highly scalable molecular screening for SARS-CoV-2 infection, based on nanopore sequencing. medRxiv [Preprint] 2020. [DOI: ]
Jiang 2020 {published data only}
    1. Jiang M, Pan W, Arastehfar A, Fang W, ling L, Fang H, et al. Development and validation of a rapid single-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) system potentially to be used for reliable and high-throughput screening of COVID-19. medRxiv [Preprint] 27 March 2020:1-12. [DOI: 10.1101/2020.03.15.20036376] - DOI - PMC - PubMed
Joung 2020 {published data only}
    1. Joung J, Ladha A, Saito M, Segel M, Bruneau R, Huang MW, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv [Preprint] 8 May 2020:1-21. [DOI: 10.1101/2020.05.04.20091231] - DOI
Joung 2020a {published data only}
    1. Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, et al. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine 2020;383(15):1492-4. - PMC - PubMed
Kalikiri 2020 {published data only}
    1. Kalikiri MK, Hasan M, Mirza F, Xaba T, Tang P, Lorenz S. High-throughput extraction of SARS-CoV-2 RNA from nasopharyngeal swabs using solid-phase reverse immobilization beads. medRxiv [Preprint] 11 April 2020:1-5. [DOI: 10.1101/2020.04.08.20055731] - DOI
Kashiwagi 2020 {published data only}
    1. Kashiwagi K, Ishii Y, Aoki K, Yagi S, Maeda T, Miyazaki T, et al. Immunochromatographic test for the detection of SARS-CoV-2 in saliva. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Kim 2019 {published data only}
    1. Kim JH, Kang M, Park E, Chung DR, Kim J, Hwang ES. A simple and multiplex Loop-Mediated isothermal Amplification (LAMP) assay for rapid detection of SARS-CoV. Biochip Journal 2019;13(4):341-51. - PMC - PubMed
Kim 2020 {published data only}
    1. Kim Y, Yaseen AB, Kishi JY, Hong F, Saka SK, Sheng K, et al. Single-strand RPA for rapid and sensitive detection of SARS-CoV-2 RNA. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.08.17.20177006]
Konrad 2020 {published data only}
    1. Konrad R, Eberle U, Dangel A, Treis B, Berger A, Bengs K, et al. Rapid establishment of laboratory diagnostics for the novel coronavirus SARS-CoV-2 in Bavaria, Germany, February 2020. Euro Surveillance 2020;25(9):2000173. - PMC - PubMed
Kurstjens 2020 {published data only}
    1. Kurstjens S, Van der Horst A, Herpers R, Geerits MW, Kluiters-de Hingh YC, Göttgens E-L, et al. Rapid identification of SARS-CoV-2-infected patients at the emergency department using routine testing. bioRxiv [Preprint] 4 April 2020:1-21. [DOI: 10.1101/2020.04.20.20067512] - DOI - PubMed
Kyosei 2020 {published data only}
    1. Kyosei Y, Namba M, Yamura S, Takeuchi R, Aoki N, Nakaishi K, et al. Proposal of de novo antigen test for COVID-19: ultrasensitive detection of spike proteins of SARS-CoV-2. Diagnostics (Basel) 2020;10(8):594. - PMC - PubMed
Lalli 2020 {published data only}
    1. Lalli MA, Chen X, Langmade SJ, Fronick CC, Sawyer CS, Burcea LC, et al. Rapid and extraction-free detection of SARS-CoV-2 from saliva with colorimetric LAMP. medRxiv [Preprint] 11 May 2020:1-25. [DOI: 10.1101/2020.05.07.20093542] - DOI - PubMed
Lamb 2020 {published data only}
    1. Lamb LE, Bartolone SN, Ward E, Chancellor MB. Rapid detection of novel coronavirus (COVID-19) by reverse transcription-loop-mediated isothermal amplification. medRxiv [Preprint] 24 February 2020:1-17. [DOI: 10.1101/2020.02.19.20025155] - DOI - PMC - PubMed
Landry 2020 {published data only}
    1. Landry ML, Criscuolo J, Peaper DR. Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. Journal of Clinical Virology 2020;130:104567. - PMC - PubMed
Lee 2020 {published data only}
    1. Lee JY, Best N, McAuley J, Porter JL, Seemann T, Schultz MB, et al. Validation of a single-step, single-tube reverse transcription loop-mediated isothermal amplification assay for rapid detection of SARS-CoV-2 RNA. Journal of Medical Microbiology 2020;69(9):1169-78. - PMC - PubMed
    1. Lee JY, Best N, McAuley J, Porter JL, Seemann T, Schultz MB, et al. Validation of a single-step, single-tube reverse transcription-loop-mediated isothermal amplification assay for rapid detection of SARS-CoV-2 RNA. bioRxiv [Preprint] 30 April 2020. [DOI: 10.1101/2020.04.28.067363] - DOI - PMC - PubMed
Le Hingrat 2020 {published data only}
    1. Le Hingrat Q, Visseaux B, Laouenan C, Tubiana S, Bouadma L, Yazdanpanah Y, et al. SARS-CoV-2 N-antigenemia: a new alternative to nucleic acid amplification techniques. medRxiv [Preprint] 2020.
Li 2020 {published data only}
    1. Li M, Zhao Y, Li Y, Chen X, Luo D, Luo M, et al. Development and evaluation of a novel RT-PCR system for reliable and rapid SARS-CoV-2 screening of blood donations. Transfusion 2020;60(12):2952-61. - PMC - PubMed
Lin 2020 {published data only}
    1. Lin CY, Hwang D, Chiu NC, Weng LC, Liu HF, Mu JJ, et al. Increased detection of viruses in children with respiratory tract infection using PCR. International Journal of Environmental Research and Public Health 2020;17(2):564. - PMC - PubMed
Liotti 2020a {published data only}
    1. Liotti FM, Menchinelli G, Marchetti S, Morandotti GA, Sanguinetti M, Posteraro B, et al. Evaluating the newly developed BioFire COVID-19 test for SARS-CoV-2 molecular detection. Clinical Microbiology and Infection 2020;26(12):1699-700. - PMC - PubMed
Lowe 2020 {published data only}
    1. Lowe CF, Matic N, Ritchie G, Lawson T, Stefanovic A, Champagne S, et al. Detection of low levels of SARS-CoV-2 RNA from nasopharyngeal swabs using three commercial molecular assays. Journal of Clinical Virology 2020;128:104387. - PMC - PubMed
Lu 2020 {published data only}
    1. Lu R, Wu X, Wan Z, Li Y, Zuo L, Qin J, et al. Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Virologica Sinica 2020;35(3):344-7. - PMC - PubMed
Lu 2020a {published data only}
    1. Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C. A novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. International Journal of Molecular Sciences 2020;21(8):2826. - PMC - PubMed
Lubke 2020 {published data only}
    1. Lubke N, Senff T, Scherger S, Hauka S, Andree M, Adams O, et al. Extraction-free SARS-CoV-2 detection by rapid RT-qPCR universal for all primary respiratory materials. Journal of Clinical Virology 2020;130:104579. - PMC - PubMed
Mahari 2020 {published data only}
    1. Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovSens-Ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCOVID-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv [Preprint] 11 May 2020:1-20. [DOI: 10.1101/2020.04.24.059204] - DOI
Marais 2020 {published data only}
    1. Marais G, Naidoo M, Hsiao NY, Valley-Omar Z, Smuts H, Hardie D. The implementation of a rapid sample preparation method for the detection of SARS-CoV-2 in a diagnostic laboratory in South Africa. PLoS One 2020;15(10):e0241029. - PMC - PubMed
Marzinotto 2020 {published data only}
    1. Marzinotto S, Mio C, Cifu A, Verardo R, Pipan C, Schneider C, et al. A streamlined approach to rapidly detect SARS-CoV-2 infection, avoiding RNA extraction. medRxiv [Preprint] 11 April 2020:1-10. [DOI: 10.1101/2020.04.06.20054114] - DOI - PMC - PubMed
McCormick‐Baw 2020 {published data only}
    1. McCormick-Baw C, Morgan K, Gaffney D, Cazares Y, Jaworski K, Byrd A, et al. Saliva as an alternate specimen source for detection of SARS-CoV-2 in symptomatic patients using Cepheid Xpert Xpress SARS-CoV-2. Journal of Clinical Microbiology 2020;58(8):e01109-20. [DOI: 10.1128/JCM.01109-20] - DOI - PMC - PubMed
McDonald 2020 {published data only}
    1. McDonald S, Courtney DM, Clark AE, Muthukumar A, Lee F, Balani J, et al. Diagnostic performance of a rapid point-of-care test for SARS-CoV-2 in an urban emergency department setting. Academic Emergency Medicine 2020;27(8):764-6. - PMC - PubMed
McRae 2020 {published data only}
    1. McRae MP, Simmons GW, Christodoulides NJ, Lu Z, Kang SK, Fenyo D, et al. Clinical decision support tool and rapid point-of-care platform for determining disease severity in patients with COVID-19. medRxiv [Preprint] 22 April 2020. [DOI: 10.1101/2020.04.16.20068411] - DOI - PMC - PubMed
Mei 2020 {published data only}
    1. Mei X, Lee HC, Diao K, Huang M, Lin B, Liu C, et al. Artificial intelligence-enabled rapid diagnosis of COVID-19 patients. medRxiv [Preprint] 7 May 2020. [DOI: 10.1101/2020.04.12.20062661] - DOI - PMC - PubMed
Meyerson 2020 {published data only}
    1. Meyerson NR, Yang Q, Clark SK, Paige CL, Fattor WT, Gilchrist AR, et al. A community-deployable SARS-CoV-2 screening test using raw saliva with 45 minutes sample-to-results turnaround. medRxiv [Preprint] 2020. [DOI: ]
Michel 2020 {published data only}
    1. Michel D, Danzer KM, Gross R, Conzelmann C, Muller JA, Freischmidt A, et al. Rapid, convenient and efficient kit-independent detection of SARS-CoV-2 RNA. Journal of Virological Methods 2020;286:113965. - PMC - PubMed
Mlcochova 2020 {published data only}
    1. Mlcochova P, Collier D, Ritchie A, Assennato SM, Hosmillo M, Goel N, et al. Combined point-of-care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G spike variant. Cell Reports. Medicine 2020;1(6):100099. - PMC - PubMed
Mohon 2020 {published data only}
    1. Mohon AN, Oberding L, Hundt J, Van Marle G, Pabbaraju K, Berenger BM, et al. Optimization and clinical validation of dual-target RT-LAMP for SARS-CoV-2. Journal of Virological Methods 2020;286:113972. - PMC - PubMed
Moses 2020 {published data only}
    1. Moses SE, Warren C, Robinson P, Curtis J, Asquith S, Holme J, et al. Endpoint PCR Detection of Sars-CoV-2 RNA. medRxiv [Preprint] 2020. [DOI: ]
Mostafa 2020 {published data only}
    1. Mostafa HH, Hardick J, Morehead E, Miller JA, Gaydos CA, Manabe YC. Comparison of the analytical sensitivity of seven commonly used commercial SARS-CoV-2 automated molecular assays. Journal of Clinical Virology 2020;130:104578. - PMC - PubMed
Muraoka 2020 {published data only}
    1. Muraoka M, Tanoi Y, Tada T, Mizukoshi M, Kawaguchi O. Quickly and simply detection for coronavirus including SARS-CoV-2 on the mobile real-time PCR device and without RNA Extraction. medRxiv [Preprint] 2020. [DOI: ]
Nachtigall 2020 {published data only}
    1. Nachtigall FM, Pereira A, Trofymchuk OS, Santos LS. Detection of SARS-CoV-2 in nasal swabs using MALDI-MS. Nature Biotechnology 2020;38(10):1168-73. - PubMed
Newman 2020 {published data only}
    1. Newman CM, Dudley DM, Wiseman RW, McLaughlin MT, Karl JA, Stauss MR, et al. Initial evaluation of a mobile SARS-CoV-2 RT-LAMP testing strategy. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Noerz 2020 {published data only}
    1. Noerz D, Fischer N, Schultze A, Kluge S, Mayer-Runge U, Aepfelbacher M, et al. Clinical evaluation of a SARS-CoV-2 RT-PCR assay on a fully automated system for rapid on-demand testing in the hospital setting. Journal of Clinical Virology 2020;128:104390. - PMC - PubMed
Ogawa 2020 {published data only}
    1. Ogawa T, Fukumori T, Nishihara Y, Sekine T, Okuda N, Nishimura T, et al. Another false-positive problem for a SARS-CoV-2 antigen test in Japan. Journal of Clinical Virology 2020;131:104612. - PMC - PubMed
Osterdahl 2020 {published data only}
    1. Osterdahl MF, Lee KA, Ni LM, Wilson S, Douthwaite S, Horsfall R, et al. Detecting SARS-CoV-2 at point of care: preliminary data comparing Loop-mediated Isothermal Amplification (LAMP) to PCR. medRxiv [Preprint] 4 April 2020:1-9. [DOI: 10.1101/2020.04.01.20047357] - DOI - PMC - PubMed
Paden 2020 {published data only}
    1. Paden CR, Tao Y, Queen K, Zhang J, Li Y, Uehara A, et al. Rapid, sensitive, full genome sequencing of severe acute respiratory syndrome virus coronavirus 2 (SARS-CoV-2). bioRxiv [Preprint] 24 April 2020:1-13. [DOI: 10.1101/2020.04.22.055897] - DOI - PMC - PubMed
Patchsung 2020 {published data only}
    1. Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, Meesawat P, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nature Biomedical Engineering 2020;4(12):1140-9. - PubMed
Pellanda 2020 {published data only}
    1. Pellanda LC, Wendland EM, McBride AJ, Tovo-Rodrigues L, Ferreira MR, Dellagostin OA, et al. Sensitivity and specificity of a rapid test for assessment of exposure to SARS-CoV-2 in a community-based setting in Brazil. medRxiv [Preprint] 10 May 2020:1-10. [DOI: 10.1101/2020.05.06.20093476] - DOI
Peto 2020 {published data only}
    1. Peto L, Rodger G, Carter DP, Osman KL, Yavuz M, Johnson K, et al. Diagnosis of SARS-CoV-2 infection with LamPORE, a high-throughput platform combining loop-mediated isothermal amplification and nanopore sequencing. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Pfefferle 2020 {published data only}
    1. Pfefferle S, Reucher S, Norz D, Lutgehetmann M. Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system. EuroSurveillance 2020;25(9):2000152. - PMC - PubMed
Pollock 2020a {published data only}
    1. Pollock NR, Savage TJ, Wardell H, Lee R, Mathew A, M Stengelin, et al. Correlation of SARS-CoV-2 nucleocapsid antigen and RNA concentrations in nasopharyngeal samples from children and adults using an ultrasensitive and quantitative antigen assay. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Qian 2020 {published data only}
    1. Qian J, Boswell SA, Chidley C, Lu ZX, Pettit ME, Gaudio BL, et al. An enhanced isothermal amplification assay for viral detection. bioRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Rabe 2020 {published data only}
    1. Rabe BA, Cepko C. SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America 2020;117(39):24450-8. - PMC - PubMed
Rauch 2020 {published data only}
    1. Rauch JN, Valois E, Ponce-Rojas JC, Aralis Z, Lach RS, Zappa F, et al. CRISPR-based and RT-qPCR surveillance of SARS-CoV-2 in asymptomatic individuals uncovers a shift in viral prevalence among a university population. medRxiv [Preprint] 2020. [DOI: ]
Rodel 2020 {published data only}
    1. Rodel J, Egerer R, Suleyman A, Sommer-Schmid B, Baier M, Henke A, et al. Use of the variplex SARS-CoV-2 RT-LAMP as a rapid molecular assay to complement RT-PCR for COVID-19 diagnosis. Journal of Clinical Virology 2020;132:104616. - PMC - PubMed
Rodriguez‐Manzano 2020 {published data only}
    1. Rodriguez-Manzano J, Malpartida-Cardenas K, Moser N, Pennisi I, Cavuto M, Miglietta L, et al. A handheld point-of-care system for rapid detection of SARS-CoV-2 in under 20 minutes. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Seo 2020 {published data only}
    1. Seo G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020;14(4):5135-42. - PubMed
Shirato 2020 {published data only}
    1. Shirato K, Nao N, Matsuyama S, Takeda M, Kageyama T. An ultra-rapid real-time RT-PCR method using the PCR1100 to detect severe acute respiratory syndrome coronavirus-2. Japanese Journal of Infectious Diseases 2020 Jun 30 [Epub ahead of print]. [DOI: 10.7883/yoken.JJID.2020.324] - DOI - PubMed
Singh 2020a {published data only}
    1. Singh NK, Ray P, Carlin AF, Magallanes C, Morgan SC, Laurent LC, et al. Hitting the diagnostic sweet spot: point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Singh 2020b {published data only}
    1. Singh P, Chakraborty R, Marwal R, Radhakrishan VS, Bhaskar AK, Vashisht H, et al. A rapid and sensitive method to detect SARS-CoV-2 virus using targeted-mass spectrometry. medRxiv [Preprint] 2020. [DOI: ] - PMC - PubMed
Smyrlaki 2020 {published data only}
    1. Smyrlaki I, Ekman M, Lentini A, Rufino de Sousa N, Papanicolaou N, Vondracek M, et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nature Communications 2020;11(1):4812. - PMC - PubMed
    1. Smyrlaki I, Ekman M, Lentini A, Vondracek M, Papanicoloau N, Aarum J, et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-qPCR. medRxiv [Preprint] 12 May 2020:1-18. [DOI: 10.1101/2020.04.17.20067348] - DOI - PMC - PubMed
St Hilaire 2020 {published data only}
    1. St Hilaire BG, Durand NC, Mitra N, Pulido SG, Mahajan R Blackburn A, et al. A rapid, low cost, and highly sensitive SARS-CoV-2 diagnostic based on whole genome sequencing. bioRxiv [Preprint] 11 May 2020:1-29. [DOI: 10.1101/2020.04.25.061499] - DOI - PMC - PubMed
Tan 2020 {published data only}
    1. Tan X, Lin C, Zhang J, Khaing OM, Fan X. Rapid and quantitative detection of COVID-19 markers in micro-liter sized samples. bioRxiv [Preprint] 22 April 2020:1-17. [DOI: 10.1101/2020.04.20.052233] - DOI
Tanida 2020 {published data only}
    1. Tanida K, Koste L, Koenig C, Wenzel W, Fritsch A, Frickmann H. Evaluation of the automated cartridge-based ARIES SARS-CoV-2 Assay (RUO) against automated Cepheid Xpert Xpress SARS-CoV-2 PCR as gold standard. European Journal of Microbiology and Immunology (Bp) 2020;10(3):156-64. - PMC - PubMed
Tibbetts 2020 {published data only}
    1. Tibbetts R, Callahan K, Rofoo K, Zarbo RJ, Samuel L. Comparison of the NeuMoDX, Diasorin Simplexa, Cepheid and Roche CDC SARS-CoV 2 EUA assays using nasopharyngeal/nasal swabs in universal transport media (UTM) and sputum and tracheal aspirates. bioRxiv [Preprint] 2020. [DOI: ]
Tran 2020 {published data only}
    1. Tran DH, Cuong HQ, Tran HT, Le UP, Do HD, Kui LM, et al. A comparative study of isothermal nucleic acid amplification methods for SARS-CoV-2 detection at point of care. bioRxiv [Preprint] 2020. [DOI: ]
Visseaux 2020 {published data only}
    1. Visseaux B, Le Hingrat Q, Collin G, Bouzid D, Lebourgeois S, Le Pluart D, et al. Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 Panel, the first rapid multiplex PCR commercial assay for SARS-CoV-2 detection. Journal of Clinical Microbiology 2020;58(8):e00630-20. [DOI: 10.1128/JCM.00630-20] - DOI - PMC - PubMed
Wang 2020a {published data only}
    1. Wang X, Zhong M, Liu Y, Ma P, Dang L, Meng Q, et al. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with Naked Eye Readout, CRISPR/Cas12a-NER. Science Bulletin (Beijing) 5 May 2020 [Epub ahead of print]. [DOI: 10.1016/j.scib.2020.04.041] - PMC - PubMed
Wang 2020b {published data only}
    1. Wang X, Yao H, Xu X, Zhang P, Zhang M, Shao J, et al. Limits of detection of six approved RT-PCR kits for the novel SARS-coronavirus-2 (SARS-CoV-2). Clinical Chemistry 2020;66(7):977-9. [DOI: 10.1093/clinchem/hvaa099] - DOI - PMC - PubMed
Wang 2020c {published data only}
    1. Wang J, Cai K, He X, Shen X, Liu J, Xu J, et al. A multiple center clinical evaluation of an ultra-fast single-tube assay for SARS-CoV-2 RNA. Clinical Microbiology and Infection 2020;26(8):P1076-81. - PMC - PubMed
Wee 2020 {published data only}
    1. Wee SK, Sivalingam SP, Yap EP. Rapid direct nucleic acid amplification test without RNA extraction for SARS-CoV-2 using a portable PCR thermocycler. bioRxiv [Preprint] 20 April 2020:1-12. [DOI: 10.1101/2020.04.17.042366] - DOI - PMC - PubMed
Wu 2020 {published data only}
    1. Wu T, Ge Y, Zhao K, Zhu X, Chen Y, Wu B, et al. A reverse-transcription recombinase-aided amplification assay for the rapid detection of N gene of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Virology 2020;549:1-4. - PMC - PubMed
Xue 2020 {published data only}
    1. Xue G, Li S, Zhang W, Du B, Cui J, Yan C, et al. Reverse-transcription recombinase-aided amplification assay for rapid detection of the 2019 novel coronavirus (SARS-CoV-2). Analytical Chemistry 2020;92(14):9699-705. [DOI: 10.1021/acs.analchem.0c01032] - DOI - PubMed
Yan 2020 {published data only}
    1. Yan C, Cui J, Huang L, Du B, Chen L, Xue G, et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clinical Microbiology and Infection 2020;26(6):773-9. - PMC - PubMed
Yang 2020b {published data only}
    1. Yang W, Dang X, Wang Q, Xu M, Zhao Q, Zhou Y, et al. Rapid detection of SARS-CoV-2 using reverse transcription RT-LAMP method. medRxiv [Preprint] 3 March 2020:1-25. [DOI: 10.1101/2020.03.02.20030130] - DOI
Yu 2020a {published data only}
    1. Yu L, Wu S, Hao X, Dong X, Mao L, Pelechano V, et al. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clinical Chemistry 2020;66(7):975-7. - PMC - PubMed
Yu 2020b {published data only}
    1. Yu L, Wu S, Hao X, Li X, Liu X, Ye S, et al. Rapid colorimetric detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform: iLACO. medRxiv [Preprint] 24 February 2020:1-19. [DOI: 10.1101/2020.02.20.20025874] - DOI - PMC - PubMed
Yu 2020c {published data only}
    1. Yu S, Nimse SB, Kim J, Song KS, Kim T. Development of a lateral flow strip membrane assay for rapid and sensitive detection of the SARS-CoV-2. Analytical Chemistry 2020;92(20):14139-44. - PubMed
Zamecnik 2020 {published data only}
    1. Zamecnik CR, Rajan JV, Yamauchi KA, Mann SA, Sowa GM, Zorn KC, et al. ReScan, a multiplex diagnostic pipeline, pans human sera for SARS-CoV-2 antigens. medRxiv [Preprint] 13 May 2020:1-21. [DOI: 10.1101/2020.05.11.20092528] - DOI - PMC - PubMed
Zeng 2020 {published data only}
    1. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochemical and Biophysical Research Communications 2020;527(3):618-23. - PMC - PubMed
Zhang 2020 {published data only}
    1. Zhang Y, Odiwuor N, Xiong J, Sun L, Nyaruaba RO, Wei H, et al. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. medRxiv [Preprint] 29 February 2020:1-14. [DOI: 10.1101/2020.02.26.20028373] - DOI
Zhao 2020 {published data only}
    1. Zhao Z, Cui H, Song W, Ru X, Zhou W, Yu X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv [Preprint] 27 February 2020:1-18. [DOI: 10.1101/2020.02.22.961268] - DOI
Zhu 2020 {published data only}
    1. Zhu X, Wang X, Han L, Chen T, Wang L, Li H, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosensors and Bioelectronics 2020;166:112437. - PMC - PubMed

Additional references

Arevalo‐Rodriguez 2020
    1. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, Campo R, Ciapponi A, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. medRxiv [Preprint] 2020:1-26. [DOI: 10.1101/2020.04.16.20066787] - DOI - PMC - PubMed
Bossuyt 2015
    1. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015;351:h5527. [DOI: 10.1136/bmj.h5527] [PMID: ] - DOI - PMC - PubMed
Boyce 2018
    1. Boyce MR, Menya D, Turner EL, Laktabai J, Prudhomme-O'Meara W. Evaluation of malaria rapid diagnostic test (RDT) use by community health workers: a longitudinal study in western Kenya. Malaria Journal 2018;17(1):206. [DOI: 10.1186/s12936-018-2358-6] - DOI - PMC - PubMed
Carter 2020
    1. Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Central Science 2020;6(5):591-605. [DOI: 10.1021/acscentsci.0c00501] - DOI - PMC - PubMed
CDC 2020
    1. Centers for Disease Control and Prevention (CDC). Interim Guidance for Antigen Testing for SARS-CoV-2. Available from: www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines... 2020.
Cevik 2021
    1. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2021;2(1):e13-22. - PMC - PubMed
Chen 2020
    1. Chen Q, He Z, Mao F, Pei H, Cao H, Liu X. Diagnostic technologies for COVID-19: a review. RSC Advances 2020;10(58):35257-64. - PMC - PubMed
Cheng 2020
    1. Cheng MP, Yansouni CP, Basta NE, Desjardins M, Kanjilal S, Paquette K, et al. Serodiagnostics for severe acute respiratory syndrome-related coronavirus-2: a narrative review. Annals of Internal Medicine 2020;15(173):450-60. - PMC - PubMed
Corman 2020
    1. Corman V, Bleicker T, Brünink S, Drosten C, Landt O, Koopmans M, et al. Diagnostic detection of Wuhan coronavirus 2019 by real-time RT-PCR - protocol and preliminary evaluation as of Jan 13, 2020. Available from www.who.int/docs/default-source/coronaviruse/wuhan-virus-assay-v1991527e... 2020.
Covidence [Computer program]
    1. Veritas Health Innovation Covidence. Version accessed 27 April 2020. Melbourne, Australia: Veritas Health Innovation. Available at covidence.org.
Crozier 2021
    1. Crozier A, Rajan S, Buchan I, McKee M. Put to the test: use of rapid testing technologies for COVID-19. BMJ 2021;372:n208. - PubMed
Deeks 2020a
    1. Deeks JJ, Raffle AE. Lateral flow tests cannot rule out SARS-CoV-2 infection. BMJ 2020;371:m4787. - PubMed
Deeks 2020b
    1. Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, Spijker R, et al. Diagnosis of SARS-CoV-2 infection and COVID-19: accuracy of signs and symptoms; molecular, antigen, and antibody tests; and routine laboratory markers. Cochrane Database of Systematic Reviews 2020, Issue 4. Art. No: CD013596. [DOI: 10.1002/14651858.CD013596] - DOI
Deeks 2020c
    1. Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database of Systematic Reviews 2020, Issue 6. Art. No: CD013652. [DOI: 10.1002/14651858.CD013652] - DOI - PMC - PubMed
Ferguson 2020
    1. Ferguson J, Dunn S, Best A, Mirza J, Percival B, Mayhew M, et al. Validation testing to determine the effectiveness of lateral flow testing for asymptomatic SARS-CoV-2 detection in low prevalence settings. medRxiv [Preprint] 2020:2020.12.01.20237784. [DOI: ] - PMC - PubMed
FIND 2020
    1. FIND. SARS-COV-2 Diagnostic pipeline. www.finddx.org/covid-19/pipeline/ (accessed 5 January 2021).
Green 2020
    1. Green K, Graziadio S, Turner P, Fanshawe T, Allen J, on behalf of the Oxford COVID-19 Evidence Service Team Centre. Molecular and antibody point-of-care tests to support the screening, diagnosis and monitoring of COVID-19. Available at www.cebm.net/oxford-covid-19/ 7 April 2020.
Hadgu 1999
    1. Hadgu A. Discrepant analysis: a biased and an unscientific method for estimating test sensitivity and specificity. Journal of Clinical Epidemiology 1999;52(12):1231-7. [DOI: 10.1016/s0895-4356(99)00101-8] - DOI - PubMed
Healy 2020
    1. Healy B, Khan A, Metezai H, Blyth I, Asad H. The impact of false positive COVID-19 results in an area of low prevalence. Clinical Medicine Journal 2020. [DOI: ] - PMC - PubMed
Jaafar 2020
    1. Jaafar R, Aherfi S, Wurtz N, Grimaldier C, Van Hoang T, Colson P, et al. Correlation between 3790 quantitative polymerase chain reaction–positives samples and positive cell cultures, including 1941 severe acute respiratory syndrome coronavirus 2 isolates. Clinical Infectious Diseases 2020:ciaa1491. [DOI: ] - PMC - PubMed
Kozel 2017
    1. Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. Journal of Clinical Microbiology 2017;55(8):2313-20. [DOI: 10.1128/JCM.00476-17] - DOI - PMC - PubMed
Kretzschmar 2020
    1. Kretzschmar ME, Rozhnova G, Bootsma MC, Van Boven M, Van de Wijgert JH, Bonten MJ. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. Lancet Public Health 2020;5(8):e452-9. - PMC - PubMed
Kucirka 2020
    1. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 Tests by time since exposure. Annals of Internal Medicine 2020;173(4):262-7. - PMC - PubMed
Landier 2018
    1. Landier J, Haohankhunnatham W, Das S, Konghahong K, Christensen P, Raksuansak J, et al. Operational performance of a Plasmodium falciparum ultrasensitive rapid diagnostic test for detection of asymptomatic infections in Eastern Myanmar. Journal of Clinical Microbiology 2018;56(8):e00565-18. [DOI: 10.1128/JCM.00565-18] - DOI - PMC - PubMed
Larremore 2020
    1. Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance. medRxiv [Preprint] 2020:2020.06.22.20136309. [DOI: ] - PMC - PubMed
Lee 2021
    1. Lee LY, Rozmanowski S, Pang M, Charlett A, Anderson C, Hughes GJ, et al. An observational study of SARS-CoV-2 infectivity by viral load and demographic factors and the utility lateral flow devices to prevent transmission. modmedmicro.nsms.ox.ac.uk/wp-content/uploads/2021/01/infectivity_manuscr... (accessed before March 2021).
Marks 2021
    1. Marks M, Millat-Martinez P, Ouchi D, Roberts CH, Alemany A, Corbacho-Monné M, et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. Lancet Infectious Diseases 2021. [DOI: 10.1016/S1473-3099(20)30985-3] - DOI - PMC - PubMed
Mayers 2020
    1. Mayers C, Baker K, Government Office for Science. Impact of false-positives and false-negatives in the UK’s COVID-19 RT-PCR testing programme. Available from assets.publishing.service.gov.uk/government/uploads/system/uploads/attac... 2020.
McInnes 2018
    1. McInnes MD, Moher D, Thombs BD, McGrath TA, Bossuyt PM, PRISMA-DTA Group. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA Statement. JAMA 2018;319(4):388-96. [DOI: 10.1001/jama.2017.19163] [PMID: ] - DOI - PubMed
McInnes 2020
    1. McInnes M, Leeflang MM, Salameh J-P, McGrath T, Van der Pol CB, Frank RA, et al. Imaging tests for the diagnosis of COVID-19. Cochrane Database of Systematic Reviews 2020, Issue 6. Art. No: CD013639. [DOI: 10.1002/14651858.CD013639] - DOI - PubMed
Meyerowitz 2020
    1. Meyerowitz EA, Richterman A, Bogoch II, Low N, Cevik M. Towards an accurate and systematic characterisation of persistently asymptomatic infection with SARS-CoV-2. Lancet Infectious Diseases 2020. [DOI: 10.1016/S1473-3099(20)30837-9] - DOI - PMC - PubMed
Moher 2009
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Medicine 2009;6(7):1000097. [DOI: 10.1371/journal.pmed1000097] - DOI - PMC - PubMed
Nabavi 2021
    1. Nabavi N, Dobson J. Testing asymptomatic individuals for SARS-CoV-2—known unknowns. blogs.bmj.com/bmj/2021/02/19/testing-asymptomatic-individuals-for-sars-c... 2021.
ONS 2020
    1. Office for National Statistics. Coronavirus (COVID-19) Infection Survey, UK: 21 August 2020. Available from: ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsan... 2020.
Pai 2012
    1. Pai NP, Vadnais C, Denkinger C, Engel N, Pai M. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Medicine 2012;9(9):e1001306. - PMC - PubMed
Pilarowski 2021
    1. Pilarowski G, Lebel P, Sunshine S, Liu J, Crawford E, Marquez C, et al. Performance characteristics of a rapid severe acute respiratory syndrome coronavirus 2 antigen detection assay at a public plaza testing site in San Francisco. Journal of Infectious Diseases 2021:jiaa802. [DOI: ] - PMC - PubMed
Pollock 2020
    1. Pollock NR, Jacobs JR, Tran K, Cranston A, Smith S, O’Kane C, et al. Performance and implementation evaluation of the Abbott BinaxNOW Rapid Antigen Test in a high-throughput drive-through community testing site in Massachusetts. medRxiv [Preprint] 2021. [DOI: 10.1101/2021.01.09.21249499] - DOI - PMC - PubMed
Reitsma 2005
    1. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology 2005;58(10):982-90. [DOI: 10.1016/j.jclinepi.2005.02.022] - DOI - PubMed
Review Manager 2020 [Computer program]
    1. The Cochrane Collaboration Review Manager 5 (RevMan 5). Version 5.4. Copenhagen: The Cochrane Collaboration, 2020.
Riley 2020
    1. Riley S, Ainslie KE, Eales O, Walters CE, Wang H, Atchison C, et al. Transient dynamics of SARS-CoV-2 as England exited national lockdown. medRxiv [Preprint] 2020. [DOI: 10.1101/2020.08.05.20169078] - DOI
Salameh 2020
    1. Salameh J-P, Leeflang MM, Hooft L, Islam N, McGrath TA, Pol CB, et al. Thoracic imaging tests for the diagnosis of COVID-19. Cochrane Database of Systematic Reviews 2020, Issue 9. Art. No: CD013639. [DOI: 10.1002/14651858.CD013639.pub2] - DOI - PubMed
Singanayagam 2020
    1. Singanayagam A, Patel M, Charlett A, Lopez BJ, Saliba V, Ellis J, et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance 2020;25(32):2001483. - PMC - PubMed
Stata [Computer program]
    1. Stata. Version 15. College Station, TX, USA: StataCorp, 2017. Available at www.stata.com.
Stegeman 2020
    1. Stegeman I, Ochodo EA, Guleid F, Holtman G, Yang B, Cunningham J, et al. Routine laboratory testing to determine if a patient has COVID-19. Cochrane Database of Systematic Reviews 2020, Issue 11. Art. No: CD013787. [DOI: 10.1002/14651858.CD013787] - DOI - PMC - PubMed
Struyf 2021
    1. Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database of Systematic Reviews 2021, Issue 2. Art. No: CD013665. [DOI: 10.1002/14651858.CD013665.pub2] - DOI - PMC - PubMed
Takwoingi 2017
    1. Takwoingi Y, Guo B, Riley RD, Deeks JJ. Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data. Statistical Methods in Medical Research 2017;26(4):1896-911. - PMC - PubMed
University of Liverpool 2020
    1. University of Liverpool. Liverpool COVID-19 community testing pilot. Interim evaluation report. Available from liverpool.ac.uk/media/livacuk/coronavirus/Liverpool,Community,Testing,Pi... 2020.
Vogels 2020
    1. Vogels CB, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nature Microbiology 2020;5(10):1299-305. [DOI: 10.1038/s41564-020-0761-6] - DOI - PMC - PubMed
Whiting 2011
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS‐2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 2011;155(8):529-36. - PubMed
WHO 2018
    1. World Health Organization (WHO). Diagnostic assessment: in vitro diagnostic medical devices (IVDs) used for the detection of high-risk human papillomavirus (HPV) genotypes in cervical cancer screening. Licence: CC BY-NC-SA 3.0 IGO. Available at apps.who.int/iris/handle/10665/272282 2018.
WHO 2020a
    1. World Health Organization. WHO information notice for IVD users: nucleic acid testing (NAT) technologies that use real-time polymerase chain reaction (RT-PCR) for detection of SARS-CoV-2. Available from who.int/news/item/14-12-2020-who-information-notice-for-ivd-users 2020.
WHO 2020b
    1. World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays. Interim guidance 11 September 2020. Available from: apps.who.int/iris/bitstream/handle/10665/334253/WHO-2019-nCoV-Antigen_De... 2020.
WHO 2020c
    1. World Health Organization. COVID-19 Target product profiles for priority diagnostics to support response to the COVID-19 pandemic v.1.0. Available from who.int/publications/m/item/covid-19-target-product-profiles-for-priorit... 2020.
WHO 2020d
    1. World Health Organization. Laboratory testing of 2019 novel coronavirus (‎‎‎‎‎‎‎‎‎‎‎‎2019-nCoV)‎‎‎‎‎‎‎‎‎‎‎‎ in suspected human cases: interim guidance. Available from www.who.int/publications/i/item/laboratory-testing-for-2019-novel-corona... 2020.
WHO 2020e
    1. Global surveillance for COVID-19 caused by human infection with COVID-19 virus: interim guidance 20 March 2020. Available from apps.who.int/iris/bitstream/handle/10665/331506/WHO-2019-nCoV-Surveillan... 2020.
Yang 2020a
    1. Yang Y, Yang M, Yuan J, Wang F, Wang Z, Li J, et al. Laboratory diagnosis and monitoring the viral shedding of SARS-CoV-2 infection. Innovation 2020;1(3). - PMC - PubMed

References to other published versions of this review

Dinnes 2020
    1. Dinnes J, Deeks JJ, Adriano A, Berhane S, Davenport C, Dittrich S, et al. Rapid, point‐of‐care antigen and molecular‐based tests for diagnosis of SARS‐CoV‐2 infection. Cochrane Database of Systematic Reviews 2020, Issue 8. Art. No: CD013705. [DOI: 10.1002/14651858.CD013705] - DOI - PMC - PubMed

Publication types

MeSH terms

Substances