Tunable s-SNOM for Nanoscale Infrared Optical Measurement of Electronic Properties of Bilayer Graphene
- PMID: 33763503
- PMCID: PMC7976599
- DOI: 10.1021/acsphotonics.0c01442
Tunable s-SNOM for Nanoscale Infrared Optical Measurement of Electronic Properties of Bilayer Graphene
Abstract
Here we directly probe the electronic properties of bilayer graphene using s-SNOM measurements with a broadly tunable laser source over the energy range from 0.3 to 0.54 eV. We tune an OPO/OPA system around the interband resonance of Bernal stacked bilayer graphene (BLG) and extract amplitude and phase of the scattered light. This enables us to retrieve and reconstruct the complex optical conductivity resonance in BLG around 0.39 eV with nanoscale resolution. Our technique opens the door toward nanoscopic noncontact measurements of the electronic properties in complex hybrid 2D and van der Waals material systems, where scanning tunneling spectroscopy cannot access the decisive layers.
© 2021 American Chemical Society.
Conflict of interest statement
The authors declare the following competing financial interest(s): H. Linnenbank, T. Steinle, and H. Giessen are co-founders of SI Stuttgart Instruments GmbH, a company producing the OPO/OPA laser system such as the one used in this study. The other authors declare no conflict of interests.
Figures



Similar articles
-
Sizable Band Gap in Epitaxial Bilayer Graphene Induced by Silicene Intercalation.Nano Lett. 2020 Apr 8;20(4):2674-2680. doi: 10.1021/acs.nanolett.0c00306. Epub 2020 Mar 10. Nano Lett. 2020. PMID: 32125162
-
Mapping of Bernal and non-Bernal stacking domains in bilayer graphene using infrared nanoscopy.Nanoscale. 2017 Mar 23;9(12):4191-4195. doi: 10.1039/c7nr00713b. Nanoscale. 2017. PMID: 28287222
-
Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.ACS Nano. 2015 Jun 23;9(6):6502-10. doi: 10.1021/acsnano.5b02345. Epub 2015 Jun 10. ACS Nano. 2015. PMID: 26039108
-
Band Gap Opening in Bilayer Graphene-CrCl3/CrBr3/CrI3 van der Waals Interfaces.Nano Lett. 2022 Aug 24;22(16):6760-6766. doi: 10.1021/acs.nanolett.2c02369. Epub 2022 Aug 5. Nano Lett. 2022. PMID: 35930625
-
Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes.Annu Rev Chem Biomol Eng. 2018 Jun 7;9:365-387. doi: 10.1146/annurev-chembioeng-060817-084150. Epub 2018 Mar 29. Annu Rev Chem Biomol Eng. 2018. PMID: 29596000 Review.
Cited by
-
Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics.Nat Commun. 2022 Feb 28;13(1):1083. doi: 10.1038/s41467-022-28224-9. Nat Commun. 2022. PMID: 35228517 Free PMC article.
-
Out-of-Plane Dielectric Susceptibility of Graphene in Twistronic and Bernal Bilayers.Nano Lett. 2021 Aug 11;21(15):6678-6683. doi: 10.1021/acs.nanolett.1c02211. Epub 2021 Jul 23. Nano Lett. 2021. PMID: 34296602 Free PMC article.
-
Super-Resolution Imaging of Nanoscale Inhomogeneities in hBN-Covered and Encapsulated Few-Layer Graphene.Adv Sci (Weinh). 2025 Apr;12(14):e2409039. doi: 10.1002/advs.202409039. Epub 2025 Feb 14. Adv Sci (Weinh). 2025. PMID: 39950849 Free PMC article.
-
Dielectric permittivity extraction of MoS2 nanoribbons using THz nanoscopy.Nanophotonics. 2025 Apr 25;14(10):1673-1682. doi: 10.1515/nanoph-2025-0060. eCollection 2025 May. Nanophotonics. 2025. PMID: 40444193 Free PMC article.
-
Observing 0D subwavelength-localized modes at ~100 THz protected by weak topology.Sci Adv. 2021 Dec 3;7(49):eabl3903. doi: 10.1126/sciadv.abl3903. Epub 2021 Dec 1. Sci Adv. 2021. PMID: 34851678 Free PMC article.
References
-
- Lui C. H.; Li Z.; Mak K. F.; Cappelluti E.; Heinz T. F. Observation of an Electrically Tunable Band Gap in Trilayer Graphene. Nat. Phys. 2011, 7 (12), 944–947. 10.1038/nphys2102. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources