Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2021 May:203:106048.
doi: 10.1016/j.cmpb.2021.106048. Epub 2021 Mar 17.

Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: A multicenter study

Affiliations
Multicenter Study

Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: A multicenter study

Zhongwen Li et al. Comput Methods Programs Biomed. 2021 May.

Abstract

Background and objective: Previous studies developed artificial intelligence (AI) diagnostic systems only using eligible slit-lamp images for detecting corneal diseases. However, images of ineligible quality (including poor-field, defocused, and poor-location images), which are inevitable in the real world, can cause diagnostic information loss and thus affect downstream AI-based image analysis. Manual evaluation for the eligibility of slit-lamp images often requires an ophthalmologist, and this procedure can be time-consuming and labor-intensive when applied on a large scale. Here, we aimed to develop a deep learning-based image quality control system (DLIQCS) to automatically detect and filter out ineligible slit-lamp images (poor-field, defocused, and poor-location images).

Methods: We developed and externally evaluated the DLIQCS based on 48,530 slit-lamp images (19,890 individuals) that were derived from 4 independent institutions using different types of digital slit lamp cameras. To find the best deep learning model for the DLIQCS, we used 3 algorithms (AlexNet, DenseNet121, and InceptionV3) to train models. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy were leveraged to assess the performance of each algorithm for the classification of poor-field, defocused, poor-location, and eligible images.

Results: In an internal test dataset, the best algorithm DenseNet121 had AUCs of 0.999, 1.000, 1.000, and 1.000 in the detection of poor-field, defocused, poor-location, and eligible images, respectively. In external test datasets, the AUCs of the best algorithm DenseNet121 for identifying poor-field, defocused, poor-location, and eligible images were ranged from 0.997 to 0.997, 0.983 to 0.995, 0.995 to 0.998, and 0.999 to 0.999, respectively.

Conclusions: Our DLIQCS can accurately detect poor-field, defocused, poor-location, and eligible slit-lamp images in an automated fashion. This system may serve as a prescreening tool to filter out ineligible images and enable that only eligible images would be transferred to the subsequent AI diagnostic systems.

Keywords: Artificial intelligence; Deep learning; Image quality; Slit lamp.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors report no declarations of interest.

Similar articles

Cited by

Publication types

LinkOut - more resources