Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;52(5):1921-1928.
doi: 10.1161/STROKEAHA.120.033785. Epub 2021 Mar 26.

Challenges of Outcome Prediction for Acute Stroke Treatment Decisions

Affiliations

Challenges of Outcome Prediction for Acute Stroke Treatment Decisions

Mayank Goyal et al. Stroke. 2021 May.

Abstract

Physicians often base their decisions to offer acute stroke therapies to patients around the question of whether the patient will benefit from treatment. This has led to a plethora of attempts at accurate outcome prediction for acute ischemic stroke treatment, which have evolved in complexity over the years. In theory, physicians could eventually use such models to make a prediction about the treatment outcome for a given patient by plugging in a combination of demographic, clinical, laboratory, and imaging variables. In this article, we highlight the importance of considering the limits and nuances of outcome prediction models and their applicability in the clinical setting. From the clinical perspective of decision-making about acute treatment, we argue that it is important to consider 4 main questions about a given prediction model: (1) what outcome is being predicted, (2) what patients contributed to the model, (3) what variables are in the model (considering their quantifiability, knowability at the time of decision-making, and modifiability), and (4) what is the intended purpose of the model? We discuss relevant aspects of these questions, accompanied by clinically relevant examples. By acknowledging the limits of outcome prediction for acute stroke therapies, we can incorporate them into our decision-making more meaningfully, critically examining their contents, outcomes, and intentions before heeding their predictions. By rigorously identifying and optimizing modifiable variables in such models, we can be empowered rather than paralyzed by them.

Keywords: decision making; endovascular therapy; intention; ischemic stroke; laboratories; prognosis; thrombectomy; treatment outcome.

PubMed Disclaimer

Similar articles

Cited by