Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun:113:1-8.
doi: 10.1016/j.fsi.2021.03.011. Epub 2021 Mar 22.

Research progress on the regulation of nutrition and immunity by microRNAs in fish

Affiliations
Review

Research progress on the regulation of nutrition and immunity by microRNAs in fish

Wei Zhou et al. Fish Shellfish Immunol. 2021 Jun.

Abstract

MicroRNAs (miRNAs) are a class of highly conserved, endogenous non-coding single-stranded small RNA molecules with a length of 18-25 nucleotides. MiRNAs can negatively regulate the target gene through complementary pairing with the mRNA. It has been more than 20 years since the discovery of miRNA molecules, and many achievements have been made in fish research. This paper reviews the research progress in the regulation of fish nutrition and immunity by miRNAs in recent years. MiRNAs regulate the synthesis of long-chain polyunsaturated fatty acids, and are involved in the metabolism of glucose, lipids, as well as cholesterol in fish. Moreover, miRNAs play various roles in antibacterial and antiviral immunity of fish. They can promote the immune response of fish, but may also participate in the immune escape mechanism of bacteria or viruses. One important aspect of miRNAs regulation on fish immunity is mediated by targeting pattern recognition receptors and downstream signaling factors. Together, current results indicate that miRNAs are widely involved in the complex regulatory network of fish. Further studies on fish miRNAs may deepen our understanding of the regulatory network of fish nutrition and immunity, and have the potential to promote the development of microRNA-based products and detection reagents that can be applied in aquaculture industry.

Keywords: Fish; Immunity; Nutrition; microRNAs.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources