Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov;42(Suppl 1):81-88.
doi: 10.1007/s00292-021-00920-1. Epub 2021 Mar 26.

Detection methods for SARS-CoV-2 in tissue

Affiliations
Review

Detection methods for SARS-CoV-2 in tissue

Saskia von Stillfried et al. Pathologe. 2021 Nov.

Abstract

Background: Analyses for the presence of SARS-CoV‑2 in the tissues of COVID-19 patients is important in order to improve our understanding of the disease pathophysiology for interpretation of diagnostic histopathological findings in autopsies, biopsies, or surgical specimens and to assess the potential for occupational infectious hazard.

Material and methods: In this review we identified 136 published studies in PubMed's curated literature database LitCovid on SARS-CoV‑2 detection methods in tissues and evaluated them regarding sources of error, specificity, and sensitivity of the methods, taking into account our own experience.

Results: Currently, no sufficiently specific histomorphological alterations or diagnostic features for COVID-19 are known. Therefore, three approaches for SARS-CoV‑2 detection are used: RNA, proteins/antigens, or morphological detection by electron microscopy. In the preanalytical phase, the dominant source of error is tissue quality, especially the different intervals between sample collection and processing or fixation (and its duration) and specifically the interval between death and sample collection in autopsies. However, this information is found in less than half of the studies (e.g., in only 42% of autopsy studies). Our own experience and first studies prove the significantly higher sensitivity and specificity of RNA-based detection methods compared to antigen or protein detection by immunohistochemistry or immunofluorescence. Detection by electron microscopy is time consuming and difficult to interpret.

Conclusions: Different methods are available for the detection of SARS-CoV‑2 in tissue. Currently, RNA detection by RT-PCR is the method of choice. However, extensive validation studies and method harmonization are not available and are absolutely necessary.

Zusammenfassung: HINTERGRUND: Die Analyse von SARS-CoV‑2 in Geweben von COVID-19-Patienten ist wichtig für ein besseres Verständnis der Pathophysiologie der Krankheit, die Interpretation der diagnostischen histopathologischen Befunde in Autopsien, Biopsien und Resektaten oder um ein potenzielles berufsbedingtes Infektionsrisiko einzuschätzen.

Material und methoden: In dieser Übersichtsarbeit haben wir 136 publizierte Studien zu Detektionsmethoden von SARS-CoV‑2 in Gewebe in der kuratierten Literaturdatenbank LitCovid von PubMed identifiziert und bezüglich Fehlerquellen, Spezifität und Sensitivität der Methoden unter Berücksichtigung eigener Erfahrungen ausgewertet.

Ergebnisse: Es gibt keine ausreichend spezifischen histomorphologischen Veränderungen bzw. diagnostischen Merkmale von COVID-19. Daher werden 3 Ansätze zum SARS-CoV-2-Nachweis genutzt: Nachweis von RNA, Proteinen/Antigenen oder morphologischer Nachweis mittels Elektronenmikroskopie. In der präanalytischen Phase liegt die dominante Fehlerquelle in der Gewebequalität, insbesondere den unterschiedlichen Intervallen zwischen Probenentnahme und -aufarbeitung, sowie spezifisch in Autopsien im Intervall zwischen Tod und Probenentnahme. Diese Angaben finden sich in weniger als der Hälfte der Studien (z. B. nur in 42 % der Autopsiestudien). Eigene Erfahrungen und erste Studien belegen die deutlich höhere Sensitivität und Spezifität von RNA-basierten Nachweismethoden gegenüber Antigen- bzw. Proteinnachweis mittels Immunhistochemie oder Immunfluoreszenz. Der Nachweis mittels Elektronenmikroskopie ist zeitintensiv und die Interpretation schwierig.

Schlussfolgerungen: Es stehen verschiedene Methoden zum Nachweis von SARS-CoV‑2 im Gewebe zur Verfügung. Derzeit ist der RNA-Nachweis mittels RT-PCR die Methode der Wahl. Notwendige, umfangreiche Validationsstudien und Methodenharmonisierung sind derzeit noch nicht verfügbar.

Keywords: COVID-19; Electron microscopy; Fluorescence in situ hybridization; Preanalytical phase; Reverse transcriptase polymerase chain reaction.

PubMed Disclaimer

Conflict of interest statement

S. von Stillfried and P. Boor declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
SARS-CoV‑2 gene sequence (green) and protein sequence (red), with indication of currently used molecular detection methods (severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu‑1, complete genome. Figure modified from NCBI reference sequence: NC_045512.2). CISH chromogenic in situ hybridization, FISH fluorescence in situ hybridization, RT-PCR reverse transcriptase polymerase chain reaction, ORF open reading frame
Fig. 2
Fig. 2
SARS-CoV‑2 detection methods in pathology. CISH chromogenic in situ hybridization, FISH fluorescence in situ hybridization, NGS next-generation sequencing, RT-PCR reverse transcriptase polymerase chain reaction, ImmunoTEM immuno-transmission electron microscopy, ISH-EM in situ hybridization electron microscopy
Fig. 3
Fig. 3
SARS-CoV‑2 detection methods in lung tissue. a Monoclonal anti-SARS spike glycoprotein antibody (mouse, monoclonal, Abcam, Cambridge, UK, Ab272420, 1:100) with apparent specific cytoplasmic granular staining pattern (a: arrowheads) in bronchial epithelia in autopsy lung tissue from a COVID-19-positive patient (SARS-CoV‑2 E [envelope protein] gene, RdRp [RNA-dependent RNA polymerase] gene, and N [nucleocapsid protein] gene positive in reverse transcriptase polymerase chain reaction [RT-PCR], disease duration 38 days). The regular negative control shows the lack of nonspecific binding of the secondary antibody (b: biotinylated horse anti-mouse, 1:300; scale bar = 40 µm). ce Nonspecific binding of the primary antibody with similar granular staining pattern in bronchial epithelial cells and macrophages in autopsy lung tissue: c without any lung disease, d in acute respiratory distress syndrome (ARDS), and e in H1N1 influenza (scale bar = 40 µm)
Fig. 4
Fig. 4
SARS-CoV‑2 RNA detection by fluorescence in situ hybridization (FISH) in lung tissue from a SARS-CoV-2-positive patient (measurement bar = 50 µm), a HE lung and pulmonary vessel, b consecutive sectional step to a with positive RNA detection for SARS-CoV‑2 (red) in macrophages (I.), endothelia (II.), and capillary endothelia (III.) in the absence of signal in the negative control (neg. contr.)

References

    1. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120–128. doi: 10.1056/NEJMoa2015432. - DOI - PMC - PubMed
    1. Ackermann M, Werlein C, Länger F, et al. COVID-19: Auswirkungen auf Lunge und Herz. Pathologe. 2021 doi: 10.1007/s00292-021-00918-9. - DOI - PMC - PubMed
    1. Amann K, Boor P, Wiech T, et al. Covid-19-Auswirkungen auf die Niere. Pathologe. 2021 doi: 10.1007/s00292-020-00899-1. - DOI - PMC - PubMed
    1. Arrossi AV, Farver C. The pulmonary pathology of COVID-19. Cleve Clin J Med. 2020 doi: 10.3949/ccjm.87a.ccc063. - DOI - PubMed
    1. Baeck M, Hoton D, Marot L, et al. Chilblains and COVID-19: why SARS-CoV-2 endothelial infection is questioned. Br J Dermatol. 2020;183:1152–1153. doi: 10.1111/bjd.19489. - DOI - PMC - PubMed