Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 26;7(13):eabe7860.
doi: 10.1126/sciadv.abe7860. Print 2021 Mar.

Latitude dictates plant diversity effects on instream decomposition

Luz Boyero  1   2 Javier Pérez  3 Naiara López-Rojo  3 Alan M Tonin  4 Francisco Correa-Araneda  5 Richard G Pearson  6   7 Jaime Bosch  8   9 Ricardo J Albariño  10 Sankarappan Anbalagan  11 Leon A Barmuta  12 Leah Beesley  13 Francis J Burdon  14 Adriano Caliman  15 Marcos Callisto  16 Ian C Campbell  17 Bradley J Cardinale  18 J Jesús Casas  19 Ana M Chará-Serna  20   21 Szymon Ciapała  22 Eric Chauvet  23 Checo Colón-Gaud  24 Aydeé Cornejo  25 Aaron M Davis  6 Monika Degebrodt  26 Emerson S Dias  15 María E Díaz  27 Michael M Douglas  13 Arturo Elosegi  3 Andrea C Encalada  28 Elvira de Eyto  29 Ricardo Figueroa  30 Alexander S Flecker  31 Tadeusz Fleituch  32 André Frainer  33   34 Juliana S França  35 Erica A García  36 Gabriela García  37 Pavel García  38   39 Mark O Gessner  26   40 Paul S Giller  41 Jesús E Gómez  42 Sergio Gómez  31 Jose F Gonçalves Jr  4 Manuel A S Graça  43 Robert O Hall Jr  44 Neusa Hamada  45 Luiz U Hepp  46 Cang Hui  47   48 Daichi Imazawa  49 Tomoya Iwata  50 Edson S A Junior  51 Samuel Kariuki  52 Andrea Landeira-Dabarca  43   53 María Leal  54 Kaisa Lehosmaa  55 Charles M'Erimba  52 Richard Marchant  56 Renato T Martins  45 Frank O Masese  57 Megan Camden  58 Brendan G McKie  14 Adriana O Medeiros  51 Jen A Middleton  13 Timo Muotka  55 Junjiro N Negishi  59 Jesús Pozo  3 Alonso Ramírez  60 Renan S Rezende  61 John S Richardson  62 José Rincón  54 Juan Rubio-Ríos  19 Claudia Serrano  28 Angela R Shaffer  24 Fran Sheldon  63 Christopher M Swan  64 Nathalie S D Tenkiano  65 Scott D Tiegs  58 Janine R Tolod  66 Michael Vernasky  63 Anne Watson  12 Mourine J Yegon  57 Catherine M Yule  67
Affiliations

Latitude dictates plant diversity effects on instream decomposition

Luz Boyero et al. Sci Adv. .

Abstract

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Predictions about latitudinal variation of the litter diversity effect on decomposition (LDED) resulting from differences in plant and detritivore diversity at low and high latitudes.
At low latitudes, the high diversity (and continuous availability, not shown in the figure) of litter provides a wide variety of resources and favors a balanced diet for detritivores. At high latitudes, the low diversity (and seasonal or periodic availability, now shown) of litter favors detritivore specialization in the use of concentrated resources. Gray arrows represent the movement of detritivores (represented by brown drawings) between different types of litter (green drawings).
Fig. 2
Fig. 2. Graphical summary of our experimental design.
We combined litter of nine plant species belonging to three families (represented by different shades of green) in three low-diversity mixtures (each containing three species of the same family) and three high-diversity mixtures (containing three species of different families. Each treatment was incubated in each stream in coarse- and fine-mesh litterbags, replicates of which were placed in five consecutive pool habitats in pairs. After 23 to 46 days of incubation, we quantified decomposition [as litter mass loss (LML)] for each species in each mixture. We then calculated the LDED (our response variable) as the difference between LML in the high-diversity and the low-diversity mixture from the same pool.
Fig. 3
Fig. 3. Global distribution and photos of study sites and variation of the LDED across latitudes and biomes in coarse- and fine-mesh litterbags.
Study sites were 43 streams (3 of which were excluded from analyses due to loss of replicates; represented by broken circles) that spanned 113° of latitude and were located in 26 countries in all inhabited continents (A). Colors correspond to terrestrial biomes included in the study, with absent biomes represented by gray color. The LDED decreased with latitude for coarse-mesh litterbags (B) and showed no latitudinal pattern for fine-mesh litterbags (C) and no differences among biomes for both types of litterbag (D and E); see table S3 for whole model results. Photographs show one stream site from each biome (from left to right: tropical savanna, TrS; tropical wet forest, TrWF; xeric shrubland, XeS; Mediterranean forest, MeF; temperate broadleaf forest, TeBF; temperate coniferous forest, TeCF; and tundra, Tu). Photo credit: GLoBE consortium.
Fig. 4
Fig. 4. Results of linear mixed-effects models testing the effect of the interaction between absolute latitude and mesh type on LDED for each species.
Mesh types were coarse (dark brown lines) and fine (light brown lines), which allowed or excluded detritivores from litterbags, respectively (see table S3 for whole model results).

References

    1. Cardinale B. J., Matulich K. L., Hooper D. U., Byrnes J. E., Duffy E., Gamfeldt L., Balvanera P., O’Connor M. I., Gonzalez A., The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011). - PubMed
    1. Kominoski J. S., Shah J. J. F., Canhoto C., Fischer D. G., Giling D. P., González E., Griffiths N. A., Larrañaga A., LeRoy C. J., Mineau M. M., McElarney Y. R., Shirley S. M., Swan C. M., Tiegs S. D., Forecasting functional implications of global changes in riparian plant communities. Front. Ecol. Environ. 11, 423–432 (2013).
    1. Allen G. H., Pavelsky T. M., Global extent of rivers and streams. Science 361, 585–588 (2018). - PubMed
    1. Handa I. T., Aerts R., Berendse F., Berg M. P., Bruder A., Butenschoen O., Chauvet E., Gessner M. O., Jabiol J., Makkonen M., McKie B. G., Malmqvist B., Peeters E. T. H. M., Scheu S., Schmid B., van Ruijven J., Vos V. C. A., Hättenschwiler S., Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014). - PubMed
    1. Srivastava D. S., Cardinale B. J., Downing A. L., Duffy J. E., Jouseau C., Sankaran M., Wright J. P., Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009). - PubMed

Publication types

LinkOut - more resources