Machine Learning for Predicting Colorectal Surgery Outcomes Through Pre- and Intra-operative Parameters and Techniques
- PMID: 33772398
- DOI: 10.1007/s11605-021-04991-6
Machine Learning for Predicting Colorectal Surgery Outcomes Through Pre- and Intra-operative Parameters and Techniques
Comment on
-
Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery.J Gastrointest Surg. 2020 Aug;24(8):1843-1851. doi: 10.1007/s11605-019-04338-2. Epub 2019 Aug 5. J Gastrointest Surg. 2020. PMID: 31385172
References
-
- Merath K, Hyer JM, Mehta R, Farooq A, Bagante F, Sahara K, Tsilimigras DI, Beal E, Paredes AZ, Wu L, Ejaz A, Pawlik TM. Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery. J Gastrointest Surg. 2020 Aug;24(8):1843-1851. https://doi.org/10.1007/s11605-019-04338-2 . Epub 2019 Aug 5. PMID: 31385172.
-
- Brierley J, Gospodarowicz M, Wittekind C, (Editors) 2016. Union for International Cancer Control (UICC). TNM Classification of Malignant Tumours. 8th ed. Hoboken, NJ: Wiley-Blackwell.
-
- Hohenberger W, Weber K, Matzel K, Papadopoulos T, Merkel S (2009) Standardized surgery for colonic cancer: complete mesocolic excision and central ligation--technical notes and outcome. Colorectal Dis. 11(4):354-64; discussion 364-5. - DOI
-
- Mostavi M, Yu-Chiao C, Yufei H, Yidong Chen. “Convolutional neural network models for cancer type prediction based on gene expression.” BMC Medical Genomics 13 (2020): 1-13. - DOI
-
- Abdar M, Mariam Z, Xujuan Z, Raj G, Xiaohui T, Prabal DB, Rashmi G. “A new nested ensemble technique for automated diagnosis of breast cancer.” Pattern Recognition Letters 132 (2020): 123-131. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
