Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 1:780:146567.
doi: 10.1016/j.scitotenv.2021.146567. Epub 2021 Mar 19.

Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China

Affiliations

Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China

Mengxue Wan et al. Sci Total Environ. .

Abstract

Conventional assessment of soil environmental quality commonly focuses on soil heavy metals (HMs), neglecting the HMs in agricultural products. To response this shortcoming, a comprehensive assessment combining both soil environmental quality and agricultural product security for evaluating soil HM impact is urgently required. This comprehensive assessment incorporates not only the HM contents in soil and agricultural product but also soil environmental quality standards, soil elemental background values, and safety standards for HMs in agricultural products. In this study, it was applied to evaluate the potential risk of HMs in soil-crop systems (i.e., soil-vegetable, soil-maize, soil-rice, and soil-wheat systems) along the Yangtze River in Nanjing, Jiangsu Province, Southeast China. Furthermore, 114Cd/110Cd isotope ratio analysis was used to identify the specific contamination sources. The mean concentrations of Cd, As, Hg, Pb, Cu, Zn, and Cr in the surface soils (0-20 cm) were 0.26, 11.07, 0.09, 32.63, 38.57, and 107.92 mg kg-1, respectively, exceeding the corresponding soil background values. Fertilizer and atmospheric deposition were the major anthropogenic sources of HM contamination in crop-growing soils. In addition to the crop type, soil pH and organic matter also influenced the transfer of HMs from soils to the edible parts of crops. Results of comprehensive assessment revealed that approximately 11.1% of paired soil-crop sites were multi-contaminated by HMs, among which paddy soils had the highest potential risk of HMs followed by maize soils, vegetable soils, and wheat soils. To evaluate the potential risk of HMs in arable land, this study provides a novel, scientific and reliable approach via integrating soil environmental quality and agricultural product security.

Keywords: Agricultural product security; Heavy metal pollution; Soil environmental quality; Soil-crop system; Source identification.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources