Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 17;379(2197):20200073.
doi: 10.1098/rsta.2020.0073. Epub 2021 Mar 29.

Assessing uncertainties from physical parameters and modelling choices in an atmospheric large eddy simulation model

Affiliations

Assessing uncertainties from physical parameters and modelling choices in an atmospheric large eddy simulation model

Fredrik Jansson et al. Philos Trans A Math Phys Eng Sci. .

Abstract

In this study, we investigate uncertainties in a large eddy simulation of the atmosphere, employing modern uncertainty quantification methods that have hardly been used yet in this context. When analysing the uncertainty of model results, one can distinguish between uncertainty related to physical parameters whose values are not exactly known, and uncertainty related to modelling choices such as the selection of numerical discretization methods, of the spatial domain size and resolution, and the use of different model formulations. While the former kind is commonly studied e.g. with forward uncertainty propagation, we explore the use of such techniques to also assess the latter kind. From a climate modelling perspective, uncertainties in the convective response and cloud formation are of particular interest, since these affect the cloud-climate feedback, one of the dominant sources of uncertainty in current climate models. Therefore we analyse the DALES model in the RICO case, a well-studied convection benchmark. We use the VECMA toolkit for uncertainty propagation, assessing uncertainties stemming from physical parameters as well as from modelling choices. We find substantial uncertainties due to small random initial state perturbations, and that the choice of advection scheme is the most influential of the modelling choices we assessed. This article is part of the theme issue 'Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico'.

Keywords: atmospheric modelling; large eddy simulation; uncertainty quantification.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Influence of varying physical parameters (horizontal) on model output quantities (vertical). The varied parameters are the cloud droplet concentration Nc, sea surface temperature θs, surface roughness length z0 and the random seed. (Online version in colour.)
Figure 2.
Figure 2.
Influence of varying model choices (horizontal) on model output quantities (vertical). The varied parameters are the microphysics scheme, the advection schemes and the random seed. (Online version in colour.)
Figure 3.
Figure 3.
Influence of varying the numerical settings (horizontal) on model output quantities (vertical). The varied parameters are the Poisson solver tolerance ϵ = 10d and the random seed. (Online version in colour.)

Similar articles

  • VECMAtk: a scalable verification, validation and uncertainty quantification toolkit for scientific simulations.
    Groen D, Arabnejad H, Jancauskas V, Edeling WN, Jansson F, Richardson RA, Lakhlili J, Veen L, Bosak B, Kopta P, Wright DW, Monnier N, Karlshoefer P, Suleimenova D, Sinclair R, Vassaux M, Nikishova A, Bieniek M, Luk OO, Kulczewski M, Raffin E, Crommelin D, Hoenen O, Coster DP, Piontek T, Coveney PV. Groen D, et al. Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200221. doi: 10.1098/rsta.2020.0221. Epub 2021 Mar 29. Philos Trans A Math Phys Eng Sci. 2021. PMID: 33775151 Free PMC article.
  • Uncertainty quantification patterns for multiscale models.
    Ye D, Veen L, Nikishova A, Lakhlili J, Edeling W, Luk OO, Krzhizhanovskaya VV, Hoekstra AG. Ye D, et al. Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200072. doi: 10.1098/rsta.2020.0072. Epub 2021 Mar 29. Philos Trans A Math Phys Eng Sci. 2021. PMID: 33775139 Free PMC article.
  • Towards validated multiscale simulations for fusion.
    Luk OO, Lakhlili J, Hoenen O, von Toussaint U, Scott BD, Coster DP. Luk OO, et al. Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200074. doi: 10.1098/rsta.2020.0074. Epub 2021 Mar 29. Philos Trans A Math Phys Eng Sci. 2021. PMID: 33775143
  • Insights into low-latitude cloud feedbacks from high-resolution models.
    Bretherton CS. Bretherton CS. Philos Trans A Math Phys Eng Sci. 2015 Nov 13;373(2054):20140415. doi: 10.1098/rsta.2014.0415. Philos Trans A Math Phys Eng Sci. 2015. PMID: 26438280 Review.
  • An audit of uncertainty in multi-scale cardiac electrophysiology models.
    Clayton RH, Aboelkassem Y, Cantwell CD, Corrado C, Delhaas T, Huberts W, Lei CL, Ni H, Panfilov AV, Roney C, Dos Santos RW. Clayton RH, et al. Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190335. doi: 10.1098/rsta.2019.0335. Epub 2020 May 25. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32448070 Free PMC article. Review.

Cited by

  • VECMAtk: a scalable verification, validation and uncertainty quantification toolkit for scientific simulations.
    Groen D, Arabnejad H, Jancauskas V, Edeling WN, Jansson F, Richardson RA, Lakhlili J, Veen L, Bosak B, Kopta P, Wright DW, Monnier N, Karlshoefer P, Suleimenova D, Sinclair R, Vassaux M, Nikishova A, Bieniek M, Luk OO, Kulczewski M, Raffin E, Crommelin D, Hoenen O, Coster DP, Piontek T, Coveney PV. Groen D, et al. Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200221. doi: 10.1098/rsta.2020.0221. Epub 2021 Mar 29. Philos Trans A Math Phys Eng Sci. 2021. PMID: 33775151 Free PMC article.

References

    1. Bony S et al. 2015. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268. (10.1038/ngeo2398) - DOI
    1. Stephens GL. 2005. Cloud feedbacks in the climate system: a critical review. J. Clim. 18, 237–273. (10.1175/JCLI-3243.1) - DOI
    1. Bony S, Dufresne JL. 2005. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806. (10.1029/2005GL023851) - DOI
    1. Zhao M et al. 2016. Uncertainty in model climate sensitivity traced to representations of cumulus precipitation microphysics. J. Clim. 29, 543–560. (10.1175/JCLI-D-15-0191.1) - DOI
    1. Xiu D. 2010. Numerical methods for stochastic computations: a spectral method approach. Princeton, NJ: Princeton University Press.

LinkOut - more resources