Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 30:181:508-520.
doi: 10.1016/j.ijbiomac.2021.03.151. Epub 2021 Mar 26.

Antibacterial efficacy of poly(hexamethylene biguanide) immobilized on chitosan/dye-modified nanofiber membranes

Affiliations

Antibacterial efficacy of poly(hexamethylene biguanide) immobilized on chitosan/dye-modified nanofiber membranes

Fan-Xuan Xu et al. Int J Biol Macromol. .

Abstract

This study aimed to develop a novel electrospun polyacrylonitrile (PAN) nanofiber membrane with the enhanced antibacterial property. The PAN nanofiber membrane was first subjected to alkaline hydrolysis treatment, and the treated membrane was subsequently grafted with chitosan (CS) to obtain a CS-modified nanofiber membrane (P-COOH-CS). The modified membrane was then coupled with different dye molecules to form P-COOH-CS-Dye membranes. Lastly, poly(hexamethylene biguanide) hydrochloride (PHMB) was immobilized on the modified membrane to produce P-COOH-CS-Dye-PHMB. Physical characterization studies were conducted on all the synthesized nanofiber membranes. The antibacterial efficacies of nanofiber membranes prepared under different synthesis conditions were evaluated systematically. Under the optimum synthesis conditions, P-COOH-CS-Dye-PHMB was highly effective in disinfecting a high concentration of Escherichia coli, with an antibacterial efficacy of approximately 100%. Additionally, the P-COOH-CS-Dye-PHMB exhibited an outstanding wash durability as its antibacterial efficacy was only reduced in the range of 5%-7% even after 5 repeated cycles of treatment. Overall, the experimental results of this study suggested that the P-COOH-CS-Dye-PHMB is a promising antibacterial nanofiber membrane that can be adopted in the food, pharmaceutical, and textile industries.

Keywords: Antibacterial efficacy; Dyed nanofiber membrane; Poly (hexamethylene biguanide).

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources