Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2021 Mar 19:14:965-979.
doi: 10.2147/JIR.S301625. eCollection 2021.

Evaluation of Adjunctive Photobiomodulation (PBMT) for COVID-19 Pneumonia via Clinical Status and Pulmonary Severity Indices in a Preliminary Trial

Affiliations
Clinical Trial

Evaluation of Adjunctive Photobiomodulation (PBMT) for COVID-19 Pneumonia via Clinical Status and Pulmonary Severity Indices in a Preliminary Trial

Mariana A Vetrici et al. J Inflamm Res. .

Abstract

Purpose: Evidence-based and effective treatments for COVID-19 are limited, and a new wave of infections and deaths calls for novel, easily implemented treatment strategies. Photobiomodulation therapy (PBMT) is a well-known adjunctive treatment for pain management, wound healing, lymphedema, and cellulitis. PBMT uses light to start a cascade of photochemical reactions that lead to local and systemic anti-inflammatory effects at multiple levels and that stimulate healing. Numerous empirical studies of PBMT for patients with pulmonary disease such as pneumonia, COPD and asthma suggest that PBMT is a safe and effective adjunctive treatment. Recent systematic reviews suggest that PBMT may be applied to target lung tissue in COVID-19 patients. In this preliminary study, we evaluated the effect of adjunctive PBMT on COVID-19 pneumonia and patient clinical status.

Patients and methods: We present a small-scale clinical trial with 10 patients randomized to standard medical care or standard medical care plus adjunctive PBMT. The PBMT group received four daily sessions of near-infrared light treatment targeting the lung tissue via a Multiwave Locked System (MLS) laser. Patient outcomes were measured via blood work, chest x-rays, pulse oximetry and validated scoring tools for pneumonia.

Results: PBMT patients showed improvement on pulmonary indices such as SMART-COP, BCRSS, RALE, and CAP (Community-Acquired Pneumonia questionnaire). PBMT-treated patients showed rapid recovery, did not require ICU admission or mechanical ventilation, and reported no long-term sequelae at 5 months after treatment. In the control group, 60% of patients were admitted to the ICU for mechanical ventilation. The control group had an overall mortality of 40%. At a 5-month follow-up, 40% of the control group experienced long-term sequelae.

Conclusion: PBMT is a safe and effective potential treatment for COVID-19 pneumonia and improves clinical status in COVID-19 pneumonia.

Keywords: BCRSS; COVID-19; RALE; SMART-COP; low-level laser therapy; pneumonia.

PubMed Disclaimer

Conflict of interest statement

MM is an employee of and receives financial support from ASA (laser manufacturer) for her lab at the University of Florence. The authors report no other conflicts of interest in this work.

Figures

Figure 1
Figure 1
Comparison of cellular and molecular mediators in SARS-CoV-2 induced cytokine storm and following PBMT. PBMT (LLLT) reduces activated macrophages, which reduces pro-inflammatory cytokines. Reduced expression of P2X7r further reduces inflammatory mediators while increasing production of anti-inflammatory IL-10 and promoting the healing process. Simultaneously, an increase in ATP via parallel pathways promotes the healing process. ↑ indicates increase, ↓ indicates decrease. Figure adapted with permission from S Mokmeli, M Vetrici. Low level laser therapy as a modality to attenuate cytokine storm at multiple levels, enhance recovery, and reduce the use of ventilators in COVID-19. Can J Respir Ther 2020;56:1–7. doi: 10.29390/cjrt-2019-015.
Figure 2
Figure 2
Patient positioning for PBMT. The patient was in the prone position with hands under the head to reduce muscle and bone barrier and maximize laser penetration. The mobile scanner was placed 20 cm above the patient. The red light on the patient’s back is a guide for laser placement. The PBMT laser light is not visible since 808 nm and 905 nm are in the invisible spectrum. Written informed consent was obtained from the subject for publication of the image.
Figure 3
Figure 3
Within-group changes in scores following treatment reveal statistically significant improvements in SMART-COP, BCRSS, CAP and RALE in the PBMT group but not in the control group. (A) SMART-COP: higher scores indicate risk of needing IRVS and ICU admission, while declining scores indicate improvements in clinical status and lower risk of needing IRVS. (B) BCRSS: higher scores indicate increasing need for oxygen supplementation and intubation, while lower scores indicate improved clinical status. (C) CAP: scores below 75 indicate subjective respiratory distress symptoms, while scores between 75 and 100 indicate normal range subjective findings. (D) RALE: higher scores indicate increased levels of consolidation or ground glass opacities on CXR diagnosing lung edema, while lower scores indicate improved radiological findings. Paired t-tests were performed for each functional outcome measure stratified by PBMT or control group (within-group testing). *Denotes statistical significance with p<0.05.
Figure 4
Figure 4
Between-group comparison of change reveals gross benefit of adjunct PBMT versus standard treatment via SMART-COP, BCRSS, CAP and RALE. (A) In SMART-COP, BCRSS and RALE, decreasing scores represent improvement in clinical status via decreased risk of needing IRVS, decreased need for oxygen supplementation or intubation, and improved radiological findings, respectively. (B) In the CAP scoring tool, increasing scores signify improvement in respiratory symptoms, as reported by patients. Simple t-tests were performed for comparing functional outcomes between PBMT and control groups. *Denotes statistical significance with p<0.05.
Figure 5
Figure 5
Chest x-rays demonstrate visible improvement in the PBMT group and worsening in the control group. Chest x-rays before and after treatment reveal improved lucency, signifying increased absorption of consolidation and ground glass opacities in all PBMT treated patients. In three of five control patients, the chest x-rays show increased consolidation and ground glass opacities, signifying progression of disease (at the end of the observation period). Two control patients were discharged to home prior to obtaining post-treatment chest x-rays.

Comment in

References

    1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7 - DOI - PMC - PubMed
    1. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020;35(3):266–271. doi: 10.1007/s12250-020-00207-4 - DOI - PMC - PubMed
    1. Wang C, Xie J, Zhao L, et al. Aveolar macrophage activation and cytokine storm in the pathogenesis of severe COVID-19. Research Square. 2020. doi: 10.21203/rs.3.rs-19346/v1 - DOI - PMC - PubMed
    1. Liang T. Handbook of COVID-19 Prevention and Treatment. Zhejiang University School of Medicine; 2020.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5 - DOI - PMC - PubMed

LinkOut - more resources