Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep;16(9):949-959.
doi: 10.1080/17460441.2021.1909567. Epub 2021 Apr 2.

Artificial intelligence in drug discovery: recent advances and future perspectives

Affiliations
Free article
Review

Artificial intelligence in drug discovery: recent advances and future perspectives

José Jiménez-Luna et al. Expert Opin Drug Discov. 2021 Sep.
Free article

Abstract

Introduction: Artificial intelligence (AI) has inspired computer-aided drug discovery. The widespread adoption of machine learning, in particular deep learning, in multiple scientific disciplines, and the advances in computing hardware and software, among other factors, continue to fuel this development. Much of the initial skepticism regarding applications of AI in pharmaceutical discovery has started to vanish, consequently benefitting medicinal chemistry.Areas covered: The current status of AI in chemoinformatics is reviewed. The topics discussed herein include quantitative structure-activity/property relationship and structure-based modeling, de novo molecular design, and chemical synthesis prediction. Advantages and limitations of current deep learning applications are highlighted, together with a perspective on next-generation AI for drug discovery.Expert opinion: Deep learning-based approaches have only begun to address some fundamental problems in drug discovery. Certain methodological advances, such as message-passing models, spatial-symmetry-preserving networks, hybrid de novo design, and other innovative machine learning paradigms, will likely become commonplace and help address some of the most challenging questions. Open data sharing and model development will play a central role in the advancement of drug discovery with AI.

Keywords: Drug discovery; QSAR; artificial intelligence; de novo drug design; synthesis prediction.

PubMed Disclaimer

Publication types

LinkOut - more resources