Exomeres: A New Member of Extracellular Vesicles Family
- PMID: 33779915
- DOI: 10.1007/978-3-030-67171-6_5
Exomeres: A New Member of Extracellular Vesicles Family
Abstract
Extracellular vesicles (EVs) are described as membranous vesicles that are secreted by various cell types. EVs can be categorised as exosomes, ectosomes, apoptotic bodies, large oncosomes and migrasomes. EVs are heterogeneous in nature according to their origin, mode of release, size, and biochemical contents. Herein, we discuss a recently discovered subpopulation of EVs called 'exomeres'. Unlike the other subtypes of EVs, exomeres are defined as non-membranous nanovesicles with a size ≤50 nm. They can be isolated using asymmetric-flow field-flow fractionation as well as ultracentrifugation. The cargo of exomeres are beginning to be unravelled and are highlighted to be enriched with proteins implicated in regulating metabolic pathways. Consistent with other types of EVs, exomeres also contain nucleic acids and lipids which can be delivered to recipient cells. These discoveries highlight the complex heterogeneity of EVs and thereby necessitates further attention to understand the nature of each subpopulation more exclusively. Overall, this chapter describes the current knowledge on exomeres.
Keywords: Asymmetric flow field-flow fractionation; Exomeres; Exosomes; Extracellular vesicles (EVs).
References
-
- Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106(10):3794–3799 - DOI
-
- Anand S, Samuel M, Kumar S, Mathivanan S (2019) Ticket to a bubble ride: cargo sorting into exosomes and extracellular vesicles. Biochim Biophys Acta Proteins Proteom 1867(12):140203 - DOI
-
- Boukouris S, Mathivanan S (2015) Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl 9(3–4):358–367 - DOI
-
- Chuo ST-Y, Chien JC-Y, Lai CP-K (2018) Imaging extracellular vesicles: current and emerging methods. J Biomed Sci 25(1):91 - DOI
-
- Fonseka P, Liem M, Ozcitti C, Adda CG, Ang CS, Mathivanan S (2019) Exosomes from N-Myc amplified neuroblastoma cells induce migration and confer chemoresistance to non-N-Myc amplified cells: implications of intra-tumor heterogeneity. J Extracell Vesicles 8(1):1597614 - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
