Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar 22;27(6):1843-8.
doi: 10.1021/bi00406a008.

Kinetic and equilibrium binding studies of actinomycin D with some d(TGCA)-containing dodecamers

Affiliations

Kinetic and equilibrium binding studies of actinomycin D with some d(TGCA)-containing dodecamers

F M Chen. Biochemistry. .

Abstract

Comparative kinetic, melting, and equilibrium binding studies of actinomycin D (ACTD) with d(ATATACGTATAT), four d(TGCA)-containing dodecamers, and poly(dG-dC).poly(dG-dC) revealed that (1) the affinity of ACTD for the dC-dG sequence is much less than for the dG-dC sequence; (2) ACTD forms 1:1 and 2:1 drug-duplex complexes with d(TATATGCATATA) and d(TATGCATGCATA), respectively, and their SDS driven dissociations exhibit single-exponential characteristics with rates (approximately 5 X 10(-4)s-1 at 20 degrees C) slightly slower than that of poly(dG-dC).poly(dG-dC); (3) although the melting temperature of d(CATGCATGCATG) is 8-9 deg higher than that of d(TATGCATGCATA), the rates of ACTD dissociation from these two oligomers are not greatly different and binding constants of (1-5) X 10(7) M-1 have been estimated for both; (4) a 3:1 stoichiometry is exhibited by ACTD binding to duplex d(TGCATGCATGCA) and the complex dissociates with two characteristic times, the fast component (1/k = approximately 100 s) comprising 2/3 of the contribution and the slow process (approximately 2000 s) contributing the other 1/3; and (5) the slow dissociation kinetics of an oligomer appears to be correlated to the higher percentage of slow association kinetics detectable by non-stop-flow techniques. These results indicate that the d(TGCA) sequence is a stronger binding and a slower dissociation site than the d(CGCG) sequence and suggest that base pairs flanking the dG-dC intercalative site may modulate interactions of the pentapeptide rings of ACTD with the DNA minor groove.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types