Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar 22;27(6):1881-8.
doi: 10.1021/bi00406a013.

Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule

Affiliations

Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule

D P Cistola et al. Biochemistry. .

Abstract

The phase behavior of several medium-chain (10- and 12-carbon) and long-chain (18-carbon) fatty acids in water was examined as a function of the ionization state of the carboxyl group. Equilibrium titration curves were generated above and below fatty acid and acid-soap chain melting temperatures and critical micelle concentrations, and the phases formed were characterized by X-ray diffraction, 13C NMR spectroscopy, and phase-contrast and polarized light microscopy. The resulting titration curves were divided into five regions: (i) at pH values less than 7, a two-phase region containing oil or fatty acid crystals and an aqueous phase; (ii) at pH approximately 7, a three-phase region containing oil, lamellar, and aqueous (or fatty acid crystals, 1:1 acid-soap crystals, and aqueous) phases; (iii) between pH 7 and 9, a two-phase region containing a lamellar fatty acid/soap (or crystalline 1:1 acid-soap) phase in an aqueous phase; (iv) at pH approximately 9, a three-phase region containing lamellar fatty acid-soap (or crystalline 1:1 acid-soap), micellar, and aqueous phases; and (v) at pH values greater than 9, a two-phase region containing micellar and aqueous phases. Interpretation of the results using the Gibbs phase rule indicated that, for oleic acid/potassium oleate, the composition of the lamellar fatty acid/soap phase varied from approximately 1:1 to 1:3 un-ionized to ionized fatty acid species. In addition, constant pH regions observed in titration curves were a result of thermodynamic invariance (zero degrees of freedom) rather than buffering capacity. The results provide insights into the physical states of fatty acids in biological systems.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types