Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 8;64(7):4163-4178.
doi: 10.1021/acs.jmedchem.1c00079. Epub 2021 Mar 30.

Novel CK2-Specific Pt(II) Compound Reverses Cisplatin-Induced Resistance by Inhibiting Cancer Cell Stemness and Suppressing DNA Damage Repair in Non-small Cell Lung Cancer Treatments

Affiliations

Novel CK2-Specific Pt(II) Compound Reverses Cisplatin-Induced Resistance by Inhibiting Cancer Cell Stemness and Suppressing DNA Damage Repair in Non-small Cell Lung Cancer Treatments

Yuanjiang Wang et al. J Med Chem. .

Abstract

Cancer stem cells (CSCs) have a pivotal impact in drug resistance, tumor metastasis, and progression of various cancer entities, including in non-small cell lung cancer (NSCLC). A CK2 inhibitor HY1 was found to show potent CSC inhibitory effects in A549 cells. By taking advantage of inherent CK2 specificity and CSC inhibition of HY1, a Pt(II) agent (HY1-Pt) was developed by conjugation of HY1 with an active Pt(II) unit to reverse cisplatin-induced resistance in A549/cDDP cell treatment. In vitro biological studies indicated that HY1-Pt can target CK2, suppress DNA damage repair, reinforce cellular accumulation of platinum, and reverse resistance apart from effectively inhibiting CSCs through Wnt/β-catenin signal pathway in A549/cDDP cells. Significantly, HY1-Pt presented an acceptable pharmacokinetic behavior and exhibited higher tumor growth inhibitory efficacy than cisplatin either in A549 or A549/cDDP xenograft models with low toxicity. Overall, HY1-Pt is a promising drug candidate for NSCLC treatment.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources