Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jun;127(2):362-7.
doi: 10.1016/0012-1606(88)90322-3.

Immunocytochemical localization of transient DNA strand breaks in differentiating myotubes using in situ nick-translation

Affiliations

Immunocytochemical localization of transient DNA strand breaks in differentiating myotubes using in situ nick-translation

B A Dawson et al. Dev Biol. 1988 Jun.

Abstract

We have localized DNA strand breaks during in vitro chicken myogenesis by repairing nicks in nuclei of fixed cell monolayers in situ with biotin-11-dUTP, followed by immunocytochemical detection of incorporated biotin with rabbit anti-biotin and FITC-labeled goat anti-rabbit antibodies. No accumulations of biotin sufficient for immunocytochemical detection were observed in 23-hr cultures of dividing cells. In 33- and 43-hr cultures, biotin was first detected in only 3% of the nuclei, all of which appeared to be in fusing myoblasts or small myotubes. In contrast, cultures of young, highly fused myotubes (56 hr) exhibited 18% biotinylated nuclei; virtually all of these nuclei, most of which were grouped as aggregates, were within myotubes. In older cultures (73 and 94 hr) incorporation of biotin into myotube nuclei markedly decreased, while increases were noted in nuclei of mononuclear cells. These results indicate that extensive single-stranded DNA nicking occurs in nuclei of young myotubes, followed by repair as terminal differentiation ensues.

PubMed Disclaimer

Publication types

LinkOut - more resources