Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;35(5):e21483.
doi: 10.1096/fj.202001912R.

Targeted inhibition of allergen-induced histamine production by neutrophils

Affiliations

Targeted inhibition of allergen-induced histamine production by neutrophils

Pedro Chacón et al. FASEB J. 2021 May.

Abstract

Histamine is a critical inflammatory mediator in allergic diseases. We showed in a previous work that neutrophils from allergic patients produce histamine in response to allergens to which the patients were sensitized. Here, we investigate the molecular mechanisms involved in this process using peripheral blood neutrophils. We challenged these cells in vitro with allergens and analyzed histamine release in the culture supernatants. We also explored the effect of common therapeutic drugs that ameliorate allergic symptoms, as well as allergen-specific immunotherapy. Additionally, we examined the expression of histidine decarboxylase and diamine oxidase, critical enzymes in the metabolism of histamine, under allergen challenge. We show that allergen-induced histamine release is dependent on the activation of the phosphoinositide 3-kinase, mitogen-activated protein kinase p38, and extracellular signal-regulated kinase 1/2 signaling pathways. We also found a contribution of the phosphatase calcineurin to lesser extent. Anti-histamines, glucocorticoids, anti-M3-muscarinic receptor antagonists, and mainly β2 -receptor agonists abolished the allergen-dependent histamine release. Interestingly, allergen-specific immunotherapy canceled the histamine release through the downregulation of histidine decarboxylase expression. Our observations describe novel molecular mechanisms involved in the allergen-dependent histamine release by human neutrophils and provide new targets to inhibit histamine production.

Keywords: allergen immunotherapy; asthma; diamine oxidase; histamine; histidine decarboxylase.

PubMed Disclaimer

References

REFERENCES

    1. Schwelberger HG, Hittmair A, Kohlwein SD. Analysis of tissue and subcellular localization of mammalian diamine oxidase by confocal laser scanning fluorescence microscopy. Inflamm Res. 1998;47(Suppl 1):S60-S61.
    1. Barcik W, Wawrzyniak M, Akdis CA, O'Mahony L. Immune regulation by histamine and histamine-secreting bacteria. Curr Opin Immunol. 2017;48:108-113.
    1. Smolinska S, Jutel M, Crameri R, O'Mahony L. Histamine and gut mucosal immune regulation. Allergy. 2014;69:273-281.
    1. Jutel M, Blaser K, Akdis CA. The role of histamine in regulation of immune responses. Chem Immunol Allergy. 2006;91:174-187.
    1. Thangam EB, Jemima EA, Singh H, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol. 2018;9:1873.

Publication types

LinkOut - more resources