Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jul 5;263(19):9333-8.

Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro

Affiliations
  • PMID: 3379073
Free article

Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro

A G Govindarajan et al. J Biol Chem. .
Free article

Abstract

Delipidation of partially purified outer membranes of Pseudomonas syringae by various delipidating agents resulted in a significant loss of ice nucleation activity associated with the cell envelopes of this and other ice nucleation active bacteria. Lipopolysaccharide depletion of such membranes caused no reduction in ice nucleation activity. Both phospholipid content and ice nucleation activity of membranes were decreased by a similar fractional amount with time after treatment with phospholipase A2. A proportional quantitative relationship between loss of ice nucleation activity and lipid removal with increasing concentrations of sodium cholate and sodium dodecyl sulfate (SDS) was also observed. Significant linear relationships between the amount of lipid removed by phospholipase A2, sodium cholate, and SDS and the loss of ice nucleation activity in P. syringae outer membranes were observed. However, the slopes of these linear relationships for membranes treated with phospholipase A2 (m = 0.80), SDS (m = 0.94), and sodium cholate (m = 0.53) differed. The lower slope value for cholate-treated membranes indicated a partial substitution of sodium cholate for the phospholipids removed. The ice nucleation activity of delipidated outer membranes was restored by reconstitution with various phospholipids in a cholate dialysis procedure. Lipid classes differed in their ability to restore ice nucleation activity to sodium cholate-treated outer membranes. These results suggest that a hydrophobic environment provided either by lipids or certain detergent micelles is required for proper assembly and structural organization of an oligomeric ice protein complex enabling its expression as an ice nucleus.

PubMed Disclaimer

Publication types

LinkOut - more resources