Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro
- PMID: 3379073
Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro
Abstract
Delipidation of partially purified outer membranes of Pseudomonas syringae by various delipidating agents resulted in a significant loss of ice nucleation activity associated with the cell envelopes of this and other ice nucleation active bacteria. Lipopolysaccharide depletion of such membranes caused no reduction in ice nucleation activity. Both phospholipid content and ice nucleation activity of membranes were decreased by a similar fractional amount with time after treatment with phospholipase A2. A proportional quantitative relationship between loss of ice nucleation activity and lipid removal with increasing concentrations of sodium cholate and sodium dodecyl sulfate (SDS) was also observed. Significant linear relationships between the amount of lipid removed by phospholipase A2, sodium cholate, and SDS and the loss of ice nucleation activity in P. syringae outer membranes were observed. However, the slopes of these linear relationships for membranes treated with phospholipase A2 (m = 0.80), SDS (m = 0.94), and sodium cholate (m = 0.53) differed. The lower slope value for cholate-treated membranes indicated a partial substitution of sodium cholate for the phospholipids removed. The ice nucleation activity of delipidated outer membranes was restored by reconstitution with various phospholipids in a cholate dialysis procedure. Lipid classes differed in their ability to restore ice nucleation activity to sodium cholate-treated outer membranes. These results suggest that a hydrophobic environment provided either by lipids or certain detergent micelles is required for proper assembly and structural organization of an oligomeric ice protein complex enabling its expression as an ice nucleus.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
