Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 25;1(1):obz026.
doi: 10.1093/iob/obz026. eCollection 2019.

Emersion and Terrestrial Locomotion of the Northern Snakehead (Channa argus) on Multiple Substrates

Affiliations

Emersion and Terrestrial Locomotion of the Northern Snakehead (Channa argus) on Multiple Substrates

N R Bressman et al. Integr Org Biol. .

Abstract

Most fishes known for terrestrial locomotion are small and/or elongate. Northern snakeheads (Channa argus) are large, air-breathing piscivores anecdotally known for terrestrial behaviors. Our goals were to determine their environmental motivations for emersion, describe their terrestrial kinematics for fish 3.0-70.0 cm and compare kinematics among four substrates. For emersion experiments, C. argus was individually placed into aquatic containers with ramps extending through the surface of the water, and exposed to 15 ecologically-relevant environmental conditions. For kinematic experiments, fish were filmed moving on moist bench liner, grass, artificial turf, and a flat or tilted rubber boat deck. Videos were digitized for analysis in MATLAB and electromyography was used to measure muscular activity. Only the low pH (4.8), high salinity (30 ppt), and high dCO2 (10% seltzer solution) treatments elicited emersion responses. While extreme, these conditions do occur in some of their native Asian swamps. Northern snakeheads >4.5 cm used a unique form of axial-appendage-based terrestrial locomotion involving cyclic oscillations of the axial body, paired with near-simultaneous movements of both pectoral fins. Individuals ≤3.5 cm used tail-flip jumps to travel on land. Northern snakeheads also moved more quickly on complex, three-dimensional substrates (e.g., grass) than on smooth substrates (e.g., bench liner), and when moving downslope. Release of snakeheads onto land by humans or accidentally by predators may be more common than voluntary emersion, but because northern snakeheads can respire air, it may be necessary to factor in the ability to spread overland into the management of this invasive species.

Auftauchen und Landbewegung des Argus-Schlangenkopffisches (Channa argus) auf mehreren Substraten (Emersion and terrestrial locomotion of the northern snakehead (Channa argus) on multiple substrates) Die meisten Fische welche für Landbewegung bekannt sind, sind klein und/oder länglich. Argus-Schlangenkopffische (Channa argus) sind große, luftatmende Fischfresser, die anekdotenhaft für ihr terrestrisches Verhalten bekannt sind. Unser Ziel war es, die umweltbedingten Motivationen für ihr Verlassen des Wassers zu bestimmen, die terrestrische Kinematik für Fische von 3, 0 bis 70, 0 cm zu beschreiben und die Kinematik zwischen vier Substraten zu vergleichen. Für Auftauch-Experimente wurden C. argus einzeln in Wasserbehälter gesetzt, die mit Rampen versehen waren, welche durch die Wasseroberfläche führten, und wurden 15 ökologisch relevanten Umweltbedingungen ausgesetzt. Für kinematische Experimente wurden Fische gefilmt, die sich auf einer feuchten Laborunterlage, Gras, Kunstrasen und einem flachen oder geneigten Gummibootsdeck bewegten. Videos wurden für die Analyse in MATLAB digitalisiert und Elektromyographie wurde verwendet, um die Muskelaktivität zu messen. Nur Treatments mit niedrigem pH (4, 8), hohem Salzgehalt (30 ppt) und hohem dCO2 (10%) lösten ein Verlassen des Wassers aus. Obwohl extrem, treten diese Bedingungen in einigen ihrer heimischen asiatischen Sümpfe auf. Argus-Schlangenkopffische > 4, 5 cm verwendeten eine einzigartige Form der terrestrischen Fortbewegung auf der Basis von Axialextremitäten, bei der zyklische Schwingungen des axialen Körpers mit nahezu gleichzeitigen Bewegungen beider Brustflossen einhergingen. Individuen ≤ 3, 5 cm benutzten „Schwanz-Flip-Sprünge“, um sich an Land zu fortzubewegen. Argus-Schlangenkopffische bewegten sich außerdem auf komplexen dreidimensionalen Substraten (z B. Gras) schneller als auf glatten Substraten (z. B. Laborunterlage) und wenn sie sich abwärts bewegten. Die Freisetzung von Schlangenkopffischen auf dem Land durch Menschen oder versehentlich durch Raubtiere ist möglicherweise häufiger als das freiwillige Verlassen des Wassers. Da Argus-Schlangenkopffische jedoch Luft atmen können, muss beim Management dieser invasiven Art möglicherweise ihre Fähigkeit berücksichtigt werden, sich über Land auszubreiten. Translated to German by F Klimm (frederike.klimm@biologie.uni-freiburg.de).

Emersión y locomoción terrestre de la cabeza de serpiente del norte (Channa argus) en múltiples sustratos (Emersion and terrestrial locomotion of the northern snakehead (Channa argus) on multiple substrates) La mayoría de los peces conocidos por locomoción terrestre son pequeños y/o alargados. Las cabezas de serpiente del norte (Channa argus) son grandes pesces piscívoros que respiran aire, anecdóticamente conocidos por sus comportamientos terrestres. Nuestros objetivos fueron determinar sus motivaciones ambientales para la emersión, describir su cinemática terrestre para peces de 3, 0 a 70, 0 cm y comparar la cinemática entre cuatro sustratos. Para los experimentos de emersión, C. argus se colocó individualmente en contenedores acuáticos con rampas que se extienden a través de la superficie del agua y fueron expuesto a quince condiciones ambientales ecológicamente pertinentes. Para los experimentos cinemáticos, los peces se filmaron moviéndose sobre un revestimiento de banco húmedo, césped, césped artificial y una cubierta de bote de goma plana o inclinada. Los videos se digitalizaron para su análisis en MATLAB y se usó electromiografía para medir la actividad muscular. Solo los tratamientos de bajo pH (4, 8), alta salinidad (30 partes por mil) y alto dCO2 (solución de agua de Seltz 10%) provocaron respuestas de emersión. Aunque son extremas, estas condiciones si ocurren en algunos de sus pantanos asiáticos nativos. Las cabezas de serpiente del norte >4, 5 cm usaron una forma única de locomoción terrestre basada en movimientos apéndiculares-axiales que involucra oscilaciones cíclicas del cuerpo axial, junto con movimientos casi simultáneos de ambas aletas pectorales. Los individuos de ≤3, 5 cm usaron saltos de cola para moverse en tierra. Las cabezas de serpiente del norte también se movían más rápidamente en sustratos tridimensionales complejos (ej., césped) que en sustratos lisos (ej., revestimiento de banco), y al moverse cuesta abajo. La liberación de cabezas de serpiente en la tierra por humanos o accidentalmente por depredadores puede ser más común que la emersión voluntaria, pero debido a que las cabezas de serpiente del norte pueden respirar aire, puede ser necesario tener en cuenta la capacidad de propagarse por tierra en el manejo de esta especie invasora. Translated to Spanish by YE Jimenez (yordano_jimenez@brown.edu).

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Muscle activity pattern during the terrestrial forward crawl of northern snakeheads. (A) Each northern snakehead (n = 7) in the EMG experiments had six intramuscular fine-wire electrodes implanted on each side (blue = left, red = right) in the labeled muscles, as well as a ground electrode near the base of the dorsal fin (snakehead image by Susan Trammell). (B) Since their forward crawl is a cyclical behavior, the muscle activity pattern is shown from 0% to 100% for each stride, with 100% being 0% of the subsequent stride. The thick bars indicate the average start and end times of muscle activation, while the thin bars reflect the standard error (SE). The numbers on the thick bars show the number of strides recorded for each muscle, with two numbers present for the abductors and adductors because these muscles would activate up to two times per stride. Overall, there is a left–right activation pattern of axial muscles, while both pectoral fins are coordinated for each half of a stride. The RA Hyp was chosen as the starting frame of reference as it had the most strides recorded of any muscle. LA Epax, left anterior epaxials; LP Epax, left posterior epaxials; LA Hyp, left anterior hypaxials; LP Hyp, left posterior hypaxials; L Add, left adductor; L Ab, left abductor; RA Epax, right anterior epaxials; RP Epax, right posterior epaxials; RA Hyp, right anterior hypaxials; RP Hyp, right posterior hypaxials; R Add, right adductor; R Ab, right abductor.
Fig. 2
Fig. 2
Northern snakehead forward crawl behavior. (A) A northern snakehead begins crawling by (B) moving its head toward the left and swinging the tip of its tail laterally toward the right. (C) The head and tail continue to move as the left pectoral fin begins retracting. (D) The right pectoral fin begins to retract, and the tail tip has achieved its approximate maximum lateral amplitude as it begins swinging toward the body’s midline. (E) Both pectoral fins are fully retracted as the head crosses the midline of the body. The fish rolls along its longitudinal axis partially onto its left pectoral fin, while the posterior axial body appears to push against the substrate. (F) The pectoral fins begin to protract as the tail crosses the body’s midline. (H) The fish rolls along its longitudinal axis toward the right side of its body as the tail tip rapidly increases in amplitude toward the left. (I) Both pectoral fins are fully protracted and the head has reached its maximum amplitude on the left side of the body. (J) The head begins moving back toward the right as the tail tip has reached its maximum amplitude on the left. The pectoral fins begin to retract. (K) The head and tail are both moving toward the right side of the body as both pectoral fins are fully retracted. The fish rolls partially onto its right pectoral fin, as the posterior axial body appears to push against the substrate. (L) The head has approximately reached its maximum amplitude as the fish rolls toward the left side of its body and rapidly increases the tail tip amplitude on the right side of the body. (M) The tail tip has reached its maximum amplitude on the right side of the body and the head begins moving back toward the left side of the body, starting a new stride. The three points tracked—tip of the snout, anterior insertion of the dorsal fin/COM, tip of the tail—are shown by yellow, red, and blue dots, respectively.
Fig. 3
Fig. 3
Effects of substrate and length on kinematics and performance. Kinematic and performance parameters of the snakehead forward crawling behavior on each substrate (symbols in panel B) are plotted on the y-axes against length. The regression line includes all substrates, to show the overall effect of length. CC = Curvature Coefficient, DR = Distance Ratio, WA = Wave Amplitude, COM = Center of Mass.
Fig. 4
Fig. 4
Juvenile northern snakehead tail-flip jump. (A) A juvenile northern snakehead (bottom right of the panel, ∼3.2 cm in TL) begins a tail-flip by lying on its lateral surface, and then (B) lifts its head above the substrate and bends it towards the tail, making a C-shape with the body. (C) Once the fish is maximally bent, it rapidly pushes against the substrate with its caudal peduncle, (D) launching itself into a ballistic flight path. (E) While the fish is airborne, it can travel several body lengths before landing (F) next to a stationary northern snakehead.

References

    1. Abel DC, Koenig CC, Davis WP. 1987. Emersion in the mangrove forest fish, Rivulus marmoratus: a unique response to hydrogen sulfide. Environ Biol Fishes 18:67–72.
    1. Altringham JD, Morris T, James RS, Smith CI. 1996. Scaling effects on muscle function in fast and slow muscles of Xenopus laevis. Exp Biol Online 1:1–8.
    1. Aronson LR. 1971. Further studies on orientation and jumping behavior in the gobiid fish, Bathygobius soporator. Ann N Y Acad Sci 188:378–92. - PubMed
    1. Ashley-Ross MA, Lundin R, Johnson KL. 2009. Kinematics of level terrestrial and underwater walking in the California newt, Taricha torosa. J Exp Zool 311:240–57. - PubMed
    1. Azizi E, Landberg T. 2002. Effects of metamorphosis on the aquatic escape response of the two-lined salamander (Eurycea bislineata). J Exp Biol 205:841–9. - PubMed