Fabrication of ultra-smooth hybrid thin coatings towards robust, highly transparent, liquid-repellent and antismudge coatings
- PMID: 33794400
- DOI: 10.1016/j.jcis.2021.03.077
Fabrication of ultra-smooth hybrid thin coatings towards robust, highly transparent, liquid-repellent and antismudge coatings
Abstract
Liquid-repellent and anti-smudge coatings have a wide range of applications on the surface of materials. In this work, a novel liquid-repellent anti-smudge hybrid coating was in situ fabricated by using tetraethyl orthosilicate (TEOS) and dimethoxydimethylsilane (DMDEOS) under acid catalysis. The resulting coatings had a high transmittance of 3-4% higher than that of blank glass. The superior smoothness and high mobility of generated poly(dimethyl siloxane) (PDMS) chains on the surface resulted in low sliding angles of 4.5° (water) and 2.8° (n-hexadecane), and a high water sliding velocity of 15.6 cm s-1 at a tilting angle of 70°. In addition, the hybrid coatings could repel both ink and dust contaminations and hinder bacteria adhesion. What's more, the anti-smudge coatings demonstrated excellent durability and mechanical properties of 8H pencil hardness and 5A adhesion grade. Thus, a new perspective is provided for the preparation of anti-smudge coatings. The simple preparation method would bring a breakthrough in the development and application of anti-smudge materials.
Keywords: Anti-smudge; Bacterial anti-adhesion; High transparency; Mechanical robustness; Ultra-smooth.
Copyright © 2021 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
LinkOut - more resources
Full Text Sources
Other Literature Sources