Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 28;11(4):245.
doi: 10.3390/jpm11040245.

Germline Mutations in Other Homologous Recombination Repair-Related Genes Than BRCA1/2: Predictive or Prognostic Factors?

Affiliations

Germline Mutations in Other Homologous Recombination Repair-Related Genes Than BRCA1/2: Predictive or Prognostic Factors?

Laura Cortesi et al. J Pers Med. .

Abstract

The homologous recombination repair (HRR) pathway repairs double-strand DNA breaks, mostly by BRCA1 and BRCA2, although other proteins such as ATM, CHEK2, and PALB2 are also involved. BRCA1/2 germline mutations are targeted by PARP inhibitors. The aim of this commentary is to explore whether germline mutations in HRR-related genes other than BRCA1/2 have to be considered as prognostic factors or predictive to therapies by discussing the results of two articles published in December 2020. The TBCRC 048 trial published by Tung et al. showed an impressive objective response rate to olaparib in metastatic breast cancer patients with germline PALB2 mutation compared to germline ATM and CHEK2 mutation carriers. Additionally, Yadav et al. observed a significantly longer overall survival in pancreatic adenocarcinoma patients with germline HRR mutations compared to non-carriers. In our opinion, assuming that PALB2 is a high-penetrant gene with a key role in the HRR system, PALB2 mutations are predictive factors for response to treatment. Moreover, germline mutations in the ATM gene provide a better outcome in pancreatic adenocarcinoma, being more often associated to wild-type KRAS. In conclusion, sequencing of HRR-related genes other than BRCA1/2 should be routinely offered as part of a biological characterization of pancreatic and breast cancers.

Keywords: BRCA1; BRCA2; PALB2; homologous recombination repair.

PubMed Disclaimer

Conflict of interest statement

L.C.: Honoraria: AstraZeneca, MSD, Pfizer; Consulting or Advisory Role: Pfizer, Novartis, Tesaro, Clovis. A.T.: Consulting or Advisory Role: Lilly, Novartis. No other potential conflicts of interest were reported.

Figures

Figure 1
Figure 1
Overview of DNA double-strand break repair mechanisms and PARP inhibitor function. When DNA single-strand break (SSB) occurs, poly (ADP-ribose) polymerase (PARP) recruitment and activation leads to SSB repair through NAD+poly(ADP-ribosyl)ation (PARylation) of histones and chromatin remodeling enzymes and recruitment of PARP-dependent DNA-repair proteins (A). In the presence of PARP inhibitor (PARPi), PARP recruited to DNA SSB is no longer able to activate PARP-dependent repair systems and to dissociate from DNA-determining fork replication collapse during DNA replication (B). The collapsed replication fork creates a DNA double-strand break (DSB) that, in homologous recombination (HR)-proficient cells, is mainly repaired by the error-free mechanism of HR. MRN complex (Mre11, Rad50, and Nbs1) initiates DNA end resection, leading to the formation of single-strand DNA (ssDNA) at the extremity of the DSB; ssDNA is protected from degradation by the loading of replication protein A (RPA). The MRN complex recruits and activates ataxia telangiectasia mutated (ATM); ATM and RPA contribute to ataxia telangiectasia and Rad3-related (ATR) activation. Once activated, ATM and ATR phosphorylate several proteins involved in the HR pathway, such as checkpoint kinases 1 and 2 (CHEK1/2). Besides, ATM, ATR, and CHEK1/2 regulate cell cycle arrest after the DSB. Fanconi anemia complementation group D2 (FANCD2) contributes to breast cancer 1 (BRCA1) activation once monoubiquitinated by Fanconi anemia complementation (FANC) and phosphorylated by ATM. The complex BRCA1- BRCA1-associated RING domain 1 (BARD1) facilitates DNA end resection and interacts with the bridging protein partner and localizer of BRCA2 (PALB2) phosphorylated by CHEK2. PALB2 promotes the recruitment of breast cancer 2 (BRCA2). PALB2 and BRCA2 remove RPA and facilitate the assembly of the RAD51 recombinase nucleoprotein filament. RAD51 nucleoprotein filament, Shu complex (which consists of four proteins, Shu1, Shu2, Csm2, and Psy3), and RAD51 paralogs mediate the D-loop formation and strand invasion of ssDNA into the intact sister chromatid, searching a homologous template for DNA synthesis by DNA polymerase (DNA pol). The repaired DNA is resolved by synthesis-dependent strand annealing (C). In HR-deficient cells, DSB is mainly repaired by the more error-prone template-independent mechanism of non-homologous end-joining (NHEJ). DNA ends are recognized by the Ku70/80 heterodimer, which recruits DNA-dependent protein kinases (DNA-PKs). The X-ray repair cross complementing 4 (XRCC4)-DNA Ligase IV-XRCC4-like factor (XLF) ligation complex seals the break. However, DNA ends can degrade, leading to incorrect DSB repair (D).

References

    1. Ciccia A., Elledge S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell. 2010;40:179–204. doi: 10.1016/j.molcel.2010.09.019. - DOI - PMC - PubMed
    1. Chapman J.R., Taylor M.R., Boulton S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 2012;47:497–510. doi: 10.1016/j.molcel.2012.07.029. - DOI - PubMed
    1. Ceccaldi R., Sarangi P., D’Andrea A.D. The Fanconi anaemia pathway: New players and new functions. Nat. Rev. Mol. Cell Biol. 2016;17:337–349. doi: 10.1038/nrm.2016.48. - DOI - PubMed
    1. Falck J., Coates J., Jackson S.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434:605–611. doi: 10.1038/nature03442. - DOI - PubMed
    1. Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R., Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y., et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–1166. doi: 10.1126/science.1140321. - DOI - PubMed

LinkOut - more resources