Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics
- PMID: 33800809
- PMCID: PMC8001765
- DOI: 10.3390/mi12030270
Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics
Abstract
This study aims at developing a miniaturized CMOS integrated silicon-based microfluidic system, compatible with a standard CMOS process, to enable the characterization, and separation of live and dead yeast cells (as model bio-particle organisms) in a cell mixture using the DEP technique. DEP offers excellent benefits in terms of cost, operational power, and especially easy electrode integration with the CMOS architecture, and requiring label-free sample preparation. This can increase the likeliness of using DEP in practical settings. In this work the DEP force was generated using an interdigitated electrode arrays (IDEs) placed on the bottom of a CMOS-based silicon microfluidic channel. This system was primarily used for the immobilization of yeast cells using DEP. This study validated the system for cell separation applications based on the distinct responses of live and dead cells and their surrounding media. The findings confirmed the device's capability for efficient, rapid and selective cell separation. The viability of this CMOS embedded microfluidic for dielectrophoretic cell manipulation applications and compatibility of the dielectrophoretic structure with CMOS production line and electronics, enabling its future commercially mass production.
Keywords: CMOS-based lab-on-a-chip; cell characterization; cell separation; dielectrophoresis (DEP); interdigitated electrodes (IDEs); microfluidics.
Conflict of interest statement
The authors declare no conflict of interest.
Figures













Similar articles
-
Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization.Biosensors (Basel). 2019 Jun 5;9(2):77. doi: 10.3390/bios9020077. Biosensors (Basel). 2019. PMID: 31195725 Free PMC article.
-
Dielectrophoretic Immobilization of Yeast Cells Using CMOS Integrated Microfluidics.Micromachines (Basel). 2020 May 15;11(5):501. doi: 10.3390/mi11050501. Micromachines (Basel). 2020. PMID: 32429098 Free PMC article.
-
Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.Biomed Microdevices. 2016 Feb;18(1):6. doi: 10.1007/s10544-016-0030-x. Biomed Microdevices. 2016. PMID: 26780441
-
DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms.Micromachines (Basel). 2019 Jun 24;10(6):423. doi: 10.3390/mi10060423. Micromachines (Basel). 2019. PMID: 31238556 Free PMC article. Review.
-
Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles.ACS Biomater Sci Eng. 2021 Jun 14;7(6):2043-2063. doi: 10.1021/acsbiomaterials.1c00083. Epub 2021 Apr 19. ACS Biomater Sci Eng. 2021. PMID: 33871975 Free PMC article. Review.
Cited by
-
A Hybrid Microfluidic Electronic Sensing Platform for Life Science Applications.Micromachines (Basel). 2022 Mar 10;13(3):425. doi: 10.3390/mi13030425. Micromachines (Basel). 2022. PMID: 35334717 Free PMC article.
-
A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip.Biomicrofluidics. 2022 Aug 16;16(4):041501. doi: 10.1063/5.0087852. eCollection 2022 Jul. Biomicrofluidics. 2022. PMID: 35992641 Free PMC article. Review.
-
Electronic selection of viable Legionella cells by a video-based, quantifiable dielectrophoresis approach.Biomed Microdevices. 2025 Jul 30;27(3):37. doi: 10.1007/s10544-025-00762-1. Biomed Microdevices. 2025. PMID: 40736590 Free PMC article.
-
Modeling Brownian Microparticle Trajectories in Lab-on-a-Chip Devices with Time Varying Dielectrophoretic or Optical Forces.Micromachines (Basel). 2021 Oct 18;12(10):1265. doi: 10.3390/mi12101265. Micromachines (Basel). 2021. PMID: 34683316 Free PMC article.
-
Portable dielectrophoresis for biology: ADEPT facilitates cell trapping, separation, and interactions.Microsyst Nanoeng. 2024 Mar 1;10:29. doi: 10.1038/s41378-024-00654-z. eCollection 2024. Microsyst Nanoeng. 2024. PMID: 38434587 Free PMC article.
References
-
- Demircan Y., Yilmaz G., Külah H., Demirci U., Khademhosseini A., Langer R., Blander J. Microfluidic Technologies for Human Health. World Scientific; Singapore: 2013. Electrophoresis and Dielectrophoresis for Lab-on-a-Chip (LOC) Analyses; pp. 341–375.
-
- Li H., Zheng Y., Akin D., Bashir R. Characterization and modeling of a microfluidic dielectrophoresis filter for biological species. J. Microelectromechanical Syst. 2005;14:103–112. doi: 10.1109/JMEMS.2004.839124. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous