Effect of Gaseous Ozone Process on Cantaloupe Melon Peel: Assessment of Quality and Antilisterial Indicators
- PMID: 33808125
- PMCID: PMC8066758
- DOI: 10.3390/foods10040727
Effect of Gaseous Ozone Process on Cantaloupe Melon Peel: Assessment of Quality and Antilisterial Indicators
Abstract
Fruit waste parts, particularly peel, are abundant sources of bioactive compounds. To be included in the formulation of value-added foods, peel needs to be transformed and subjected to a preservation process. Therefore, this study seeks to assess the effect of ozone on the quality and antilisterial indicators of cantaloupe melon peel paste, aiming at obtaining a product with the potential to be used as a food additive. Ozone was bubbled during 30 and 60 min, and some physicochemical characteristics (soluble solids content, pH and colour), bioactive compounds (total phenolics, chlorophylls and vitamin C) and antioxidant activity were analysed. Peel was also inoculated with Listeria innocua, used as a treatment efficiency indicator. The results indicated that, although ozone negatively affected antioxidant activity, it positively influenced all bioactive compounds analysed. An L. innocua reduction of 1.2 log cycle was achieved after ozone exposure. Ozone should be exploited as a promising technology to assure the quality/safety of cantaloupe melon peel. Indeed, if melon peel is conveniently converted into a suitable form that can be used as a food ingredient, this will promote the valorisation of waste materials with the consequent reduction of industrial by-products and new perspectives for market opportunities.
Keywords: Listeria spp.; bioactive compounds; melon peel; ozone; quality/safety.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures



References
-
- Li F., Li S., Li H.-B., Deng G.-F., Ling W.-H., Wu S., Xu X.-R., Chen F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods. 2013;5:1298–1309. doi: 10.1016/j.jff.2013.04.016. - DOI
-
- Kanatt S.R., Chander R., Sharma A. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int. J. Food Sci. Technol. 2010;45:216–222. doi: 10.1111/j.1365-2621.2009.02124.x. - DOI
-
- De Moraes Crizel T., Jablonski A., de Oliveira Rios A., Rech R., Flôres S.H. Dietary fiber from orange byproducts as a potential fat replacer. LWT Food Sci. Technol. 2013;53:9–14. doi: 10.1016/j.lwt.2013.02.002. - DOI
-
- Ajila C.M., Bhat S.G., Prasada Rao U.J.S. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007;102:1006–1011. doi: 10.1016/j.foodchem.2006.06.036. - DOI
-
- Fundo J.F., Miller F.A., Garcia E., Santos J.R., Silva C.L.M., Brandão T.R.S. Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. J. Food Meas. Charact. 2018;12:292–300. doi: 10.1007/s11694-017-9640-0. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous