Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar 30;9(4):349.
doi: 10.3390/biomedicines9040349.

Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease

Affiliations
Review

Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease

Julia T Stadler et al. Biomedicines. .

Abstract

Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL) differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium. Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus, accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential vasoprotective lipoprotein during fetal development. We also provide an overview of whether and how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as pre-eclampsia or gestational diabetes mellitus.

Keywords: HDL; LpPLA2; fetal development; gestational diabetes mellitus; preeclampsia; pregnancy; sphingosine-1-phosphate.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Described routes how maternal cholesterol is transported across the human placenta. First, maternally derived lipoproteins interact with respective receptors at the microvillous membrane of the syncytium. After uptake of cholesterol in the syncytium, it is secreted/effluxed to lipid-poor acceptor apolipoproteins of fetal HDL. How stroma transfers cholesterol to the fetoplacental endothelium remains elusive. High-density lipoprotein; SR-BI; scavenger receptor BI; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein; LDL-R, low-density lipoprotein receptor; LRP-1, LDL receptor-related protein 1; ABCA1, ATP-binding cassette A1; ABCG1, ATP-binding cassette G1.
Figure 2
Figure 2
Schematic representation of differences between adult- and fetal HDL composition and function (indicated with black arrows). Cord blood-derived HDL exhibits several alterations in the apolipoprotein composition, such as decreased levels of apoA-I, apoC-III, apoD, and apoC-II and higher levels of apoE. In the fetus, the activity of CETP is decreased, while the mass and activity of PON1 and the antioxidative capacity are decreased. Fetal HDL is characterized by increased HDL particle size. HDL, high-density lipoprotein; apo, apolipoprotein; PON1, paraoxonase 1; CETP, cholesteryl-ester transfer protein.
Figure 3
Figure 3
PE affects maternal and fetal HDL composition and function. Changes are indicated with purple arrows. In maternal HDL, a decrease in PON1 activity, apoM, and S1P content was observed, whereas apoE and LpPLA2 were increased. These changes in HDL composition were associated with reduced anti-inflammatory and anti-oxidative activity, but increased cholesterol efflux capacity. Fetal HDL of PE pregnancies showed similar changes, with reduced PON1 activity and apoM, but increased LpPLA2 and apoE, accompanied by increased cholesterol efflux capacity. Oxidative modifications of lipids were detected in both maternal and fetal HDL. HDL, high-density lipoprotein; apo, apolipoprotein; PON1, paraoxonase 1; LpPLA2, lipoprotein-associated phospholipase A2.
Figure 4
Figure 4
GDM affects maternal and fetal HDL composition and function. Changes are indicated with purple arrows. In maternal HDL, a decrease in PON1 activity and mass, apoM, and apoA-I content were observed, whereas SAA and LpPLA2 were increased. These changes in HDL composition were associated with reduced anti-inflammatory and anti-oxidative activity and reduced cholesterol efflux capacity. Fetal GDM-HDL showed the same alterations in PON1 and LpPLA2 activity, apoM and SAA content, and further increased apoE content. GDM was also accompanied by the increased particle size of both maternal and fetal HDL. HDL, high-density lipoprotein; apo, apolipoprotein; PON1, paraoxonase 1; LpPLA2, lipoprotein-associated phospholipase A2; SAA, serum amyloid A.

Similar articles

Cited by

References

    1. Roux C., Wolf C., Mulliez N., Gaoua W., Cormier V., Chevy F., Citadelle D. Role of cholesterol in embryonic development. Am. J. Clin. Nutr. 2000;71:1270S–1279S. doi: 10.1093/ajcn/71.5.1270s. - DOI - PubMed
    1. Huang X., Litingtung Y., Chiang C. Region-specific requirement for cholesterol modification of sonic hedgehog in patterning the telencephalon and spinal cord. Development. 2007;134:2095–2105. doi: 10.1242/dev.000729. - DOI - PubMed
    1. Woollett L.A. Maternal cholesterol in fetal development: Transport of cholesterol from the maternal to the fetal circulation. Am. J. Clin. Nutr. 2005;82:1155–1161. doi: 10.1093/ajcn/82.6.1155. - DOI - PubMed
    1. Woollett L.A. Review: Transport of maternal cholesterol to the fetal circulation. Placenta. 2011;32:S218–S221. doi: 10.1016/j.placenta.2011.01.011. - DOI - PMC - PubMed
    1. Jayalekshmi V.S., Ramachandran S. Maternal cholesterol levels during gestation: Boon or bane for the offspring? Mol. Cell. Biochem. 2021;476:401–416. doi: 10.1007/s11010-020-03916-2. - DOI - PubMed

LinkOut - more resources