Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar 19:11:627023.
doi: 10.3389/fonc.2021.627023. eCollection 2021.

Autophagy and Cancer Dormancy

Affiliations
Review

Autophagy and Cancer Dormancy

Yunus Akkoc et al. Front Oncol. .

Abstract

Metastasis and relapse account for the great majority of cancer-related deaths. Most metastatic lesions are micro metastases that have the capacity to remain in a non-dividing state called "dormancy" for months or even years. Commonly used anticancer drugs generally target actively dividing cancer cells. Therefore, cancer cells that remain in a dormant state evade conventional therapies and contribute to cancer recurrence. Cellular and molecular mechanisms of cancer dormancy are not fully understood. Recent studies indicate that a major cellular stress response mechanism, autophagy, plays an important role in the adaptation, survival and reactivation of dormant cells. In this review article, we will summarize accumulating knowledge about cellular and molecular mechanisms of cancer dormancy, and discuss the role and importance of autophagy in this context.

Keywords: autophagy; cancer; dormancy; metastasis; recurrence; relapse.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Time-dependent progression of metastasis and dormancy. Conventional diagnostic tumor scans are able to detect tumors bigger than 1 mm3 (tumor mass = mprimary). After diagnosis with cancer (time = t0), patient may undergo chemotherapy, radiotherapy or adjuvant therapy, yet dormant cells escape and become resistant to these treatments (time = t2), and awaken after years or even decades (time = t3). In tumor dormancy, tumor mass (m1) stagnates due to limited neovascularization and constant immune cell attack that balance tumor cell demise and proliferation. After the latency period, dormant tumor cells awaken and lead to tumor outgrowth (tumor mass>m1). In cellular dormancy, cancer cells hibernate as single cells or small clusters (tumor mass = m1≈0) and lead to massive tumor growth (tumor mass≥mprimary) following exit from dormancy.
Figure 2
Figure 2
General mechanism of mammalian autophagy. Autophagy is tightly controlled by the activity of AMPK and mTOR. Under nutrient deprivation, AMPK activates autophagy, yet mTOR inhibition is relieved. Subsequent activation of ULK1 and BECN1 complexes promotes formation of phagophore. ATG5-12-16L complex and ATG8 family protein LC3 are required for elongation and closure of phagophore. Fully mature double-layered autophagosome containing cargo molecules fuses with late endosomes and lysosomes. Autophagosomes and their cargo are degraded through lysosomal enzymes and recycled into cytosol for reuse.

References

    1. Liu Q, Zhang H, Jiang X, Qian C, Liu Z, Luo D. Factors involved in cancer metastasis: A better understanding to “seed and soil” hypothesis. Mol Cancer (2017) 16. 10.1186/s12943-017-0742-4 - DOI - PMC - PubMed
    1. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol (2019) 20:69–84. 10.1038/s41580-018-0080-4 - DOI - PubMed
    1. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem (2008) 283:14910–4. 10.1074/jbc.C800074200 - DOI - PMC - PubMed
    1. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol (2002). 10.1038/nrm757 - DOI - PubMed
    1. Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The Mouse Snail Gene Encodes a Key Regulator of the Epithelial-Mesenchymal Transition. Mol Cell Biol (2001) 21:8184–8. 10.1128/mcb.21.23.8184-8188.2001 - DOI - PMC - PubMed

LinkOut - more resources