Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar 19:11:641472.
doi: 10.3389/fcimb.2021.641472. eCollection 2021.

Taxon-Specific Proteins of the Pathogenic Entamoeba Species E. histolytica and E. nuttalli

Affiliations
Review

Taxon-Specific Proteins of the Pathogenic Entamoeba Species E. histolytica and E. nuttalli

Constantin König et al. Front Cell Infect Microbiol. .

Abstract

The human protozoan parasite Entamoeba histolytica can live in the human intestine for months or years without generating any symptoms in the host. For unknown reasons, amoebae can suddenly destroy the intestinal mucosa and become invasive. This can lead to amoebic colitis or extraintestinal amoebiasis whereby the amoebae spread to other organs via the blood vessels, most commonly the liver where abscesses develop. Entamoeba nuttalli is the closest genetic relative of E. histolytica and is found in wild macaques. Another close relative is E. dispar, which asyptomatically infects the human intestine. Although all three species are closely related, only E. histolytica and E. nuttalli are able to penetrate their host's intestinal epithelium. Lineage-specific genes and gene families may hold the key to understanding differences in virulence among species. Here we discuss those genes found in E. histolytica that have relatives in only one or neither of its sister species, with particular focus on the peptidase, AIG, Ariel, and BspA families.

Keywords: AIG; Ariel; BspA; Entamoeba; peptidases; virulence.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Comparative blastp analysis of 927 proteins identified as unique for E. histolytica (Wilson et al., 2019). Shown is the comparison of E. histolytica with E. nuttalli and E. dispar as a venn diagram. The three protein families Ariel, AIG and BspA as well SAPLIP1 are shown separately. The proteins found in E. histolytica are boxed in red, those of E. dispar in blue and those of E. nuttalli in green.
Figure 2
Figure 2
Phylogram of aldose reductases. The aldose reductases sequences of E. histolytica, E. dispar, E. nuttalli were compared for homologous sequences using BlastP. The best scoring 10 proteins as well as three aldose reductase sequences used as outgroups were used to generate a phylogram using the online tool Clustal Omega (Sievers et al., 2011). Sequences used: E. histolytica aldose reductase (EHI_029620/EHI_039190), E. invadens aldo_ket_red domain-containing protein (EIN_497000), E. dispar NADPH-dependent alpha-keto amide reductase (EDI_260680), Piromyces finnis_aldehyde reductase_(ORX59359), Ricinus communis_NADPH-dependent aldo-keto reductase, chloroplastic_(XP_002529872), Manihot esculenta_NADPH-dependent aldo-keto reductase, chloroplastic-like_(XP_021619253), Hevea brasiliensis_NADPH-dependent aldo-keto reductase, chloroplastic-like (XP_021670007), Momordica charantia_NADPH-dependent aldo-keto reductase, chloroplastic-like_(XP_022143954), Dictyostelium discoideum_aldehyde reductase_(XP_628918), Malus domestica NADPH-dependent aldo-keto reductase, chloroplastic-like (XP_008369945), Spinacia oleracea_NADPH-dependent aldo-keto reductase, chloroplastic-like (XP_021845528), Panicum hallii aldo-keto reductase family 4 member C10-like isoform X2 (XP_025809823), Rosa chinensis_NADPH-dependent aldo-keto reductase, chloroplastic-like (XP_024188589), Escherichia coli aldo-keto reductase (E0IVZ7), Saccharomyces cerevisiae NADPH-dependent aldose reductase (P38715), Sporidiobolus salmonicolor aldehyde reductase (P27800).
Figure 3
Figure 3
Cysteine, asparagine, serine and metallopeptidases of E. histolytica, E. dispar and E. nuttalli (for more details see Table S9).

Similar articles

Cited by

References

    1. Andra J., Leippe M. (1994). Pore-forming peptide of Entamoeba histolytica. Significance of positively charged amino acid residues for its mode of action. FEBS Lett. 354, 97–102. 10.1016/0014-5793(94)01103-6 - DOI - PubMed
    1. Bansal D., Ave P., Kerneis S., Frileux P., Boche O., Baglin A. C., et al. . (2009). An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PloS Negl. Trop. Dis. 3, e551. 10.1371/journal.pntd.0000551 - DOI - PMC - PubMed
    1. Barrios-Ceballos M. P., Martinez-Gallardo N. A., Anaya-Velazquez F., Mirelman D., Padilla-Vaca F. (2005). A novel protease from Entamoeba histolytica homologous to members of the family S28 of serine proteases. Exp. Parasitol. 110, 270–275. 10.1016/j.exppara.2005.02.022 - DOI - PubMed
    1. Baxt L. A., Baker R. P., Singh U., Urban S. (2008). An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion. Genes Dev. 22, 1636–1646. 10.1101/gad.1667708 - DOI - PMC - PubMed
    1. Biller L., Schmidt H., Krause E., Gelhaus C., Matthiesen J., Handal G., et al. . (2009). Comparison of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. Proteomics. 9, 4107–4120. 10.1002/pmic.200900022 - DOI - PubMed

Publication types

LinkOut - more resources