Biomechanics of Circumferential Cervical Fixation Using Posterior Facet Cages: A Cadaveric Study
- PMID: 33819945
- PMCID: PMC8021845
- DOI: 10.14245/ns.2040552.276
Biomechanics of Circumferential Cervical Fixation Using Posterior Facet Cages: A Cadaveric Study
Abstract
Objective: Anterior cervical discectomy and fusion (ACDF) is a common procedure for the treatment of cervical disease. Circumferential procedures are options for multilevel pathology. Potential complications of multilevel anterior procedures are dysphagia and pseudarthrosis, whereas potential complications of posterior surgery include development of cervical kyphosis and postoperative chronic neck pain. The addition of posterior cervical cages (PCCs) to multilevel ACDF is a minimally invasive option to perform circumferential fusion. This study evaluated the biomechanical performance of 3-level circumferential fusion with PCCs as supplemental fixation to anteriorly placed allografts, with and without anterior plate fixation.
Methods: Nondestructive flexibility tests (1.5 Nm) performed on 6 cervical C2-7 cadaveric specimens intact and after discectomy (C3-6) in 3 instrumented conditions: allograft with anterior plate (G+P), PCC with allograft and plate (PCC+G+P), and PCC with allograft alone (PCC+G). Range of motion (ROM) data were analyzed using 1-way repeated-measures analysis of variance.
Results: All instrumented conditions resulted in significantly reduced ROM at the 3 instrumented levels (C3-6) compared to intact spinal segments in flexion, extension, lateral bending, and axial rotation (p < 0.001). No significant difference in ROM was found between G+P and PCC+G+P conditions or between G+P and PCC+G conditions, indicating similar stability between these conditions in all directions of motion.
Conclusion: All instrumented conditions resulted in considerable reduction in ROM. The added reduction in ROM through the addition of PCCs did not reach statistical significance. Circumferential fusion with anterior allograft, without plate and with PCCs, has comparable stability to ACDF with allograft and plate.
Keywords: Allografts; Cadaver; Diskectomy; Range of motion; Rotation; Spine.
Conflict of interest statement
J.E. Heller is a consultant in education for NuVasive, Inc. (San Diego, CA), Providence Medical Technology, Inc. (Pleasanton, CA), RTI Surgical Holdings, Inc. (Alachua, FL), SI-BONE, Inc. (Santa Clara, CA), Stryker Corp. (Kalamazoo, MI), and Zimmer Biomet Holdings. Inc. (Warsaw, IN); receives grant support from Ethicon (Somerville, NJ); and has investments in ATEC Spine (Carlsbad, CA), Portola Pharmaceuticals, Inc. (South San Francisco, CA), and Spine BioPharma, LLC (Dover, DE). Other authors have no relevant disclosures.
Figures
References
-
- Fraser JF, Hartl R. Anterior approaches to fusion of the cervical spine: a metaanalysis of fusion rates. J Neurosurg Spine. 2007;6:298–303. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
