Nearest-neighbour transition-state analysis for nucleic acid kinetics
- PMID: 33823552
- PMCID: PMC8096236
- DOI: 10.1093/nar/gkab205
Nearest-neighbour transition-state analysis for nucleic acid kinetics
Abstract
We used stopped-flow to monitor hypochromicity for 43 oligonucleotide duplexes to study nucleic acid kinetics and extract transition-state parameters for association and dissociation. Reactions were performed in 1.0 M NaCl (for literature comparisons) and 2.2 mM MgCl2 (PCR conditions). Dissociation kinetics depended on sequence, increased exponentially with temperature, and transition-state parameters inversely correlated to thermodynamic parameters (r = -0.99). Association had no consistent enthalpic component, varied little with temperature or sequence, and poorly correlated to thermodynamic parameters (r = 0.28). Average association rates decreased 78% in MgCl2 compared to NaCl while dissociation was relatively insensitive to ionic conditions. A nearest-neighbour kinetic model for dissociation predicted rate constants within 3-fold of literature values (n = 11). However, a nearest-neighbour model for association appeared overparameterized and inadequate for predictions. Kinetic predictions were used to simulate published high-speed (<1 min) melting analysis and extreme (<2 min) PCR experiments. Melting simulations predicted apparent melting temperatures increase on average 2.4°C when temperature ramp rates increased from 0.1 to 32°C/s, compared to 2.8°C reported in the literature. PCR simulations revealed that denaturation kinetics are dependent on the thermocycling profile. Simulations overestimated annealing efficiencies at shorter annealing times and suggested that polymerase interactions contribute to primer-template complex stability at extension temperatures.
© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures






Similar articles
-
The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G) . d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A).Eur J Biochem. 1984 Feb 15;139(1):19-27. doi: 10.1111/j.1432-1033.1984.tb07970.x. Eur J Biochem. 1984. PMID: 6698006
-
Ensemble and single-molecule biophysical characterization of D17.4 DNA aptamer-IgE interactions.Biochim Biophys Acta. 2016 Jan;1864(1):154-64. doi: 10.1016/j.bbapap.2015.08.008. Epub 2015 Aug 22. Biochim Biophys Acta. 2016. PMID: 26307469
-
MELTING, a flexible platform to predict the melting temperatures of nucleic acids.BMC Bioinformatics. 2012 May 16;13:101. doi: 10.1186/1471-2105-13-101. BMC Bioinformatics. 2012. PMID: 22591039 Free PMC article.
-
Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models.Crit Rev Biotechnol. 2016;36(3):566-77. doi: 10.3109/07388551.2014.993589. Epub 2015 Jan 14. Crit Rev Biotechnol. 2016. PMID: 25586037 Review.
-
Stabilities of double- and triple-strand helical nucleic acids.Prog Biophys Mol Biol. 1992;58(3):225-57. doi: 10.1016/0079-6107(92)90007-s. Prog Biophys Mol Biol. 1992. PMID: 1380719 Review.
Cited by
-
Direct monitoring of the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization from gaps and overhangs.bioRxiv [Preprint]. 2023 Apr 10:2023.04.10.536266. doi: 10.1101/2023.04.10.536266. bioRxiv. 2023. Update in: Biophys J. 2023 Aug 22;122(16):3323-3339. doi: 10.1016/j.bpj.2023.07.009. PMID: 37090657 Free PMC article. Updated. Preprint.
-
Rapid Nucleic Acid Diagnostic Technology for Pandemic Diseases.Molecules. 2024 Mar 29;29(7):1527. doi: 10.3390/molecules29071527. Molecules. 2024. PMID: 38611806 Free PMC article. Review.
-
Making Molecular Diagnostics Faster.Int J Lab Hematol. 2025 Apr 22:10.1111/ijlh.14487. doi: 10.1111/ijlh.14487. Online ahead of print. Int J Lab Hematol. 2025. PMID: 40260633 Review.
-
Hybridization kinetics of out-of-equilibrium mixtures of short RNA oligonucleotides.Nucleic Acids Res. 2022 Sep 23;50(17):9647-9662. doi: 10.1093/nar/gkac784. Nucleic Acids Res. 2022. PMID: 36099434 Free PMC article.
-
Rapid Cycle and Extreme Polymerase Chain Reaction.Methods Mol Biol. 2023;2621:257-266. doi: 10.1007/978-1-0716-2950-5_14. Methods Mol Biol. 2023. PMID: 37041449
References
-
- Borer P.N., Dengler B., Tinoco I., Uhlenbeck O.C.. Stability of ribonucleic acid double-stranded helices. J. Mol. Biol. 1974; 86:843–853. - PubMed
-
- Myrick J.T., Pryor R.J., Palais R.A., Ison S.J., Sanford L., Dwight Z.L., Huuskonen J.J., Sundberg S.O., Wittwer C.T.. Integrated extreme real-time PCR and high-speed melting analysis in 52 to 87 seconds. Clin. Chem. 2019; 65:263–271. - PubMed
-
- Rejali N.A., Zuiter A.M., Quackenbush J.F., Wittwer C.T.. Reverse transcriptase kinetics for one-step RT-PCR. Anal. Biochem. 2020; 601:113768. - PubMed
-
- Wetmur J.G. Hybridization and renaturation kinetics of nucleic acids. Annu. Rev. Biophys. Bioeng. 1976; 5:337–361. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources