Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 6;52(1):53.
doi: 10.1186/s13567-021-00923-z.

Shelter cats host infections with multiple Trypanosoma cruzi discrete typing units in southern Louisiana

Affiliations

Shelter cats host infections with multiple Trypanosoma cruzi discrete typing units in southern Louisiana

Eric Dumonteil et al. Vet Res. .

Abstract

Trypanosoma cruzi is a zoonotic parasite endemic in the southern US and the Americas, which may frequently infect dogs, but limited information is available about infections in cats. We surveyed a convenience sample of 284 shelter cats from Southern Louisiana to evaluate T. cruzi infection using serological and PCR tests. Parasites from PCR positive cats were also genotyped by PCR and deep sequencing to assess their genetic diversity. We detected a seropositivity rate for T. cruzi of at least 7.3% (17/234), and 24.6% of cats (70/284) were PCR positive for the parasite. Seropositivity increased with cat age (R2 = 0.91, P = 0.011), corresponding to an incidence of 7.2% ± 1.3 per year, while PCR positivity decreased with age (R2 = 0.93, P = 0.007). Cats were predominantly infected with parasites from TcI and TcVI DTUs, and to a lesser extent from TcIV and TcV DTUs, in agreement with the circulation of these parasite DTUs in local transmission cycles. These results indicate that veterinarians should have a greater awareness of T. cruzi infection in pets and that it would be important to better evaluate the risk for spillover infections in humans.

Keywords: Cat; Chagas disease; Discrete typing units; Genotyping; Phylogeny; Transmission cycle.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Seropositivity and PCR positivity according to cat age. Seropositivity significantly increased with cat age according to the following equation: Seropositivity = −0.069 + 0.072 * log(Age), P = 0.011, R2 = 0.91. Conversely, PCR positivity significantly decreased with cat age according to: PCR positivity = 0.499 − 0.083 * log(Age), P = 0.007, R2 = 0.93.
Figure 2
Figure 2
Phylogenetic analysis of T. cruzi sequences from cats. Maximum likelihood analysis of sequences from cats is shown, together with mini-exon sequences from reference T. cruzi strains from the indicated DTUs (TcI to TcVI and Tc bat). Bootstrap support is indicated only for the main nodes of the tree for clarity. Reference sequences are indicated with an asterisk.
Figure 3
Figure 3
Comparison of parasite sequences from cats with other mammalian hosts and vectors from southern Louisiana. Maximum likelihood phylogenetic trees are shown for TcI (A), TcII, TcV and TcVI (B) and TcIV DTUs (C). Only bootstrap node support > 50% is indicated for clarity. Cartoons illustrate species harboring the respective parasite DTUs. Reference sequences are indicated with an asterisk.

Similar articles

Cited by

References

    1. WHO Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec. 2015;90:33–43. - PubMed
    1. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis. 2013;13:342–348. doi: 10.1016/S1473-3099(13)70002-1. - DOI - PMC - PubMed
    1. Curtis-Robles R, Hamer SA, Lane S, Levy MZ, Hamer GL. Bionomics and spatial distribution of triatomine vectors of Trypanosoma cruzi in Texas and other southern states, USA. Am J Trop Med Hyg. 2018;98:113–121. doi: 10.4269/ajtmh.17-0526. - DOI - PMC - PubMed
    1. Dumonteil E, Pronovost H, Bierman EF, Sanford A, Majeau A, Moore R, Herrera C. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol. 2020;29:3747–3761. doi: 10.1111/mec.15582. - DOI - PubMed
    1. Herrera CP, Licon MH, Nation CS, Jameson SB, Wesson DM. Genotype diversity of Trypanosoma cruzi in small rodents and Triatoma sanguisuga from a rural area in New Orleans, Louisiana. Parasites Vectors. 2015;8:123. doi: 10.1186/s13071-015-0730-8. - DOI - PMC - PubMed