The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication
- PMID: 33825319
- DOI: 10.1111/1755-0998.13396
The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication
Abstract
There are wide genomic and phenotypic differences between Asian and European pig breeds, yet the current reference genome is the European Duroc pig genome. A high-quality pig genome is lacking for genetic analysis of agricultural traits in Asian pigs. Here, using a hybrid approach, a high-quality reference genome (MSCAAS v1) for the Asian Meishan breed is assembled with a contig N50 size of 48.05 Mb. MSCAAS v1 outperforms the Duroc genome as a reference genome for Asian breeds. Genomic comparison reveals 49,103 structural variations (SVs) between Meishan and Duroc, 4.02% of which are Asian-specific SVs (AP-SVs). Notably, a 30-Mb hotspot for AP-SVs on chromosome X enriched for genes associated with Asian-pig-specific phenotypes is present in Asian domestic pig breeds, but absent in Asian wild boars, suggesting that Asian domestic breeds share a common ancestor. Interbreed transcriptomics reveals transcriptional suppression roles of AP-SVs in multiple tissues. Finally, transcriptional regulation in the intron of IGF2R is reported, as genomic SV (274-bp deletion) in Tibetan pig limits its growth compared to domestic pig breeds. In summary, this study provides insights regarding the genetic changes underlying pig domestication and presents a benchmark-setting resource for the utilization of agricultural valuable loci in Asian pigs.
Keywords: Meishan pig; genome assembly; genome evolution; structural variation.
© 2021 John Wiley & Sons Ltd.
Similar articles
-
Long-read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds.Mol Ecol Resour. 2022 May;22(4):1508-1520. doi: 10.1111/1755-0998.13550. Epub 2021 Nov 26. Mol Ecol Resour. 2022. PMID: 34758184
-
Chromosome-Level Genome Assembly of the Meishan Pig and Insights into Its Domestication Mechanisms.Animals (Basel). 2025 Feb 19;15(4):603. doi: 10.3390/ani15040603. Animals (Basel). 2025. PMID: 40003085 Free PMC article.
-
Analysis of Structural Variants Reveal Novel Selective Regions in the Genome of Meishan Pigs by Whole Genome Sequencing.Front Genet. 2021 Feb 4;12:550676. doi: 10.3389/fgene.2021.550676. eCollection 2021. Front Genet. 2021. PMID: 33613628 Free PMC article.
-
The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis.Annu Rev Plant Biol. 2019 Apr 29;70:639-665. doi: 10.1146/annurev-arplant-050718-100320. Annu Rev Plant Biol. 2019. PMID: 31035826 Review.
-
Mining the pig genome to investigate the domestication process.Heredity (Edinb). 2014 Dec;113(6):471-84. doi: 10.1038/hdy.2014.68. Epub 2014 Jul 30. Heredity (Edinb). 2014. PMID: 25074569 Free PMC article. Review.
Cited by
-
Large Fragment InDels Reshape Genome Structure of Porcine Alveolar Macrophage 3D4/21 Cells.Genes (Basel). 2022 Aug 24;13(9):1515. doi: 10.3390/genes13091515. Genes (Basel). 2022. PMID: 36140681 Free PMC article.
-
Genome-wide association study and genomic prediction for intramuscular fat content in Suhuai pigs using imputed whole-genome sequencing data.Evol Appl. 2022 Oct 24;15(12):2054-2066. doi: 10.1111/eva.13496. eCollection 2022 Dec. Evol Appl. 2022. PMID: 36540634 Free PMC article.
-
Initial Analysis of Structural Variation Detections in Cattle Using Long-Read Sequencing Methods.Genes (Basel). 2022 May 6;13(5):828. doi: 10.3390/genes13050828. Genes (Basel). 2022. PMID: 35627213 Free PMC article.
-
Identification and characterization of structural variants related to meat quality in pigs using chromosome-level genome assemblies.BMC Genomics. 2024 Mar 21;25(1):299. doi: 10.1186/s12864-024-10225-1. BMC Genomics. 2024. PMID: 38515031 Free PMC article.
-
Genomic Analysis of Porcine Reproductive and Respiratory Syndrome Virus 1 Revealed Extensive Recombination and Potential Introduction Events in China.Vet Sci. 2022 Aug 23;9(9):450. doi: 10.3390/vetsci9090450. Vet Sci. 2022. PMID: 36136666 Free PMC article.
References
REFERENCES
-
- Adey, A., Kitzman, J. O., Burton, J. N., Daza, R., Kumar, A., Christiansen, L., Ronaghi, M., Amini, S., L. Gunderson, K., Steemers, F. J., & Shendure, J. (2014). In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Research, 24(12), 2041-2049.
-
- Ai, H., Fang, X., Yang, B., Huang, Z., Chen, H., Mao, L., Zhang, F., Zhang, L. U., Cui, L., He, W., Yang, J., Yao, X., Zhou, L., Han, L., Li, J., Sun, S., Xie, X., Lai, B., Su, Y., … Huang, L. (2015). Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics, 47(3), 217.
-
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410.
-
- Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169.
-
- Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300.
MeSH terms
Grants and funding
- 31972541/National Natural Science Foundation of China
- 31330074/National Natural Science Foundation of China
- 2018YFC0840400/National Key Research and Development Project
- 2016ZX080011-006/Program of New Breed Development via Transgenic Technology
- 2015CB943101/National Key Basic Research Program of China
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous