Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 7;18(1):71.
doi: 10.1186/s12985-021-01542-y.

An in vitro model for assessment of SARS-CoV-2 infectivity by defining the correlation between virus isolation and quantitative PCR value: isolation success of SARS-CoV-2 from oropharyngeal swabs correlates negatively with Cq value

Affiliations

An in vitro model for assessment of SARS-CoV-2 infectivity by defining the correlation between virus isolation and quantitative PCR value: isolation success of SARS-CoV-2 from oropharyngeal swabs correlates negatively with Cq value

Sissy Therese Sonnleitner et al. Virol J. .

Erratum in

Abstract

Background: At the beginning of the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), little was known about its actual rate of infectivity and any COVID-19 patient positive in laboratory testing was supposed to be highly infective and a public health risk factor.

Methods: One hundred oropharyngeal samples were obtained during routine work flow of testing symptomatic persons by quantitative polymerase chain reaction (qPCR) and were inoculated onto cell culture of VeroB4 cells to study the degree of infectivity of SARS-CoV-2 in vitro. Quantification by virus titration and an external standard using synthetic RNA gave the breaking point of infectivity in SARS-CoV-2 in vitro.

Results: A clear negative correlation (r = - 0.76; p < 0.05) could be asserted between the viral load in quantitative polymerase chain reaction (qPCR) and the probability of a successful isolation in serial isolation experiments of specific oropharyngeal samples positive in qPCR. Quantification by virus titration and an external standard using synthetic RNA indicate a Cq between 27 and 30 in E-gene screening PCR as a breaking point in vitro, where infectivity decreases significantly and isolations become less probable.

Conclusions: This study showed that only the 21% of samples with the highest viral load were infectious enough to transmit the virus in vitro and determined that the dispersion rate in vitro is surprisingly close to those calculated in large retrospective epidemiological studies for SARS-CoV-2. This raises the question of whether this simple in vitro model is suitable to give first insights in dispersion characters of novel or neglected viral pathogens. The statement that SARS-CoV-2 needs at least 40,000 copies to reliably induce infection in vitro is an indication of its transmissibility in Public Health decisions. Applying quantitative PCR systems in diagnosis of SARS-CoV2 can distinguish between patients providing a high risk of transmission and those, where the risk of transmission is probably limited to close and long-lasting contacts.

Keywords: Infectivity; Quantitation of viral infectivity; SARS-CoV-2; Transmission pattern in vitro.

PubMed Disclaimer

Conflict of interest statement

No consent for publication applicable. This manuscript does not provide any patients’ data nor any animal studies or experiments. This manuscript does not contain any individual person’s data in any form. The authors declare no financial and non-financial conflict of interests. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Success of isolation of SARS-CoV-2 in VeroB4 cells by Cq-values (%). Isolation success correlated negatively with the initial Cq value in the sample (r = − 0.76; p < 0.05). All oropharyngeal samples with an initial viral load lower than Cq 20 in E-gene screening PCR (n = 8), could be grown in vitro (100%). An initial Cq value between 20 and 24.9 led to a 72.7% chance of infection, which decreased to 25% at an initial viral load between 25 and 29.9 and to 7.1% at an initial load between 30 and 34.9. Samples with initial viral loads of Cq 35 or higher could not be isolated in our experiment
Fig. 2
Fig. 2
The distribution of Cq values during the outbreak in a total data set of 371 samples (dark grey). The light grey bars show the comparable distribution of Cq values in our experimental sample collection and demonstrate that our sample set is representative for the distribution of initial viral loads during an outbreak of SARS-CoV-2
Fig. 3
Fig. 3
Dilution series of plaque-forming units (PFU) of an average of our isolates compared to a commercially available external standard using synthetic RNA copies (COV019, CE, Exact Diagnostics, USA)

Similar articles

Cited by

References

    1. Adam D, Wu P, Wong J, Lau E, Tsang T, Cauchemez S, et al. Clustering and superspreading potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Hong Kong. [PREPRINT (Version 1) available at Research Square. 10.21203/rs3rs-29548/v1. 2020.
    1. Al-Tawfiq JA, Rodriguez-Morales AJ. Super-spreading events and contribution to transmission of MERS, SARS, and SARS-CoV-2 (COVID-19) J Hosp Infect. 2020;105(2):111–112. doi: 10.1016/j.jhin.2020.04.002. - DOI - PMC - PubMed
    1. Chowell G, Abdirizak F, Lee S, Lee J, Jung E, Nishiura H, Viboud C. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med. 2015 doi: 10.1186/s12916-015-0450-0. - DOI - PMC - PubMed
    1. Chowell G, Nishiura H. Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med. 2014 doi: 10.1186/s12916-014-0196-0. - DOI - PMC - PubMed
    1. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DG. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020 doi: 10.2807/1560-7917.ES.2020.25.3.2000045. - DOI - PMC - PubMed

Publication types