Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr 7;4(1):65.
doi: 10.1038/s41746-021-00438-z.

Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis

Affiliations
Review

Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis

Ravi Aggarwal et al. NPJ Digit Med. .

Abstract

Deep learning (DL) has the potential to transform medical diagnostics. However, the diagnostic accuracy of DL is uncertain. Our aim was to evaluate the diagnostic accuracy of DL algorithms to identify pathology in medical imaging. Searches were conducted in Medline and EMBASE up to January 2020. We identified 11,921 studies, of which 503 were included in the systematic review. Eighty-two studies in ophthalmology, 82 in breast disease and 115 in respiratory disease were included for meta-analysis. Two hundred twenty-four studies in other specialities were included for qualitative review. Peer-reviewed studies that reported on the diagnostic accuracy of DL algorithms to identify pathology using medical imaging were included. Primary outcomes were measures of diagnostic accuracy, study design and reporting standards in the literature. Estimates were pooled using random-effects meta-analysis. In ophthalmology, AUC's ranged between 0.933 and 1 for diagnosing diabetic retinopathy, age-related macular degeneration and glaucoma on retinal fundus photographs and optical coherence tomography. In respiratory imaging, AUC's ranged between 0.864 and 0.937 for diagnosing lung nodules or lung cancer on chest X-ray or CT scan. For breast imaging, AUC's ranged between 0.868 and 0.909 for diagnosing breast cancer on mammogram, ultrasound, MRI and digital breast tomosynthesis. Heterogeneity was high between studies and extensive variation in methodology, terminology and outcome measures was noted. This can lead to an overestimation of the diagnostic accuracy of DL algorithms on medical imaging. There is an immediate need for the development of artificial intelligence-specific EQUATOR guidelines, particularly STARD, in order to provide guidance around key issues in this field.

PubMed Disclaimer

Conflict of interest statement

D.K. and A.K. are employees of Google Health. A.D. is an adviser at Google Health. D.S.W.T holds a patent on a deep learning system for the detection of retinal diseases.

Figures

Fig. 1
Fig. 1. PRISMA flow diagram of included studies.
PRISMA (preferred reporting items for systematic reviews and meta-analyses) flow diagram of included studies.
Fig. 2
Fig. 2. QUADAS-2 summary plots.
Risk of bias and applicability concerns summary about each QUADAS-2 domain presented as percentages across the 82 included studies in ophthalmic imaging (a), 115 in respiratory imaging (b) and 82 in breast imaging (c).

References

    1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. - DOI - PubMed
    1. Obermeyer Z, Emanuel EJ. Predicting the future — big data, machine learning, and clinical medicine. N. Engl. J. Med. 2016;375:1216–1219. doi: 10.1056/NEJMp1606181. - DOI - PMC - PubMed
    1. Esteva A, et al. A guide to deep learning in healthcare. Nat. Med. 2019;25:24–29. doi: 10.1038/s41591-018-0316-z. - DOI - PubMed
    1. Litjens G, et al. A survey on deep learning in medical image analysis. Med. Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005. - DOI - PubMed
    1. Bluemke DA, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers—from the radiology editorial board. Radiology. 2020;294:487–489. doi: 10.1148/radiol.2019192515. - DOI - PubMed