Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 22:8:640538.
doi: 10.3389/fnut.2021.640538. eCollection 2021.

Can a Higher Protein/Low Glycemic Index vs. a Conventional Diet Attenuate Changes in Appetite and Gut Hormones Following Weight Loss? A 3-Year PREVIEW Sub-study

Affiliations

Can a Higher Protein/Low Glycemic Index vs. a Conventional Diet Attenuate Changes in Appetite and Gut Hormones Following Weight Loss? A 3-Year PREVIEW Sub-study

Marion E C Buso et al. Front Nutr. .

Abstract

Background: Previous research showed that weight-reducing diets increase appetite sensations and/or circulating ghrelin concentrations for up to 36 months, with transient or enduring perturbations in circulating concentrations of the satiety hormone peptide YY. Objective: This study assessed whether a diet that is higher in protein and low in glycemic index (GI) may attenuate these changes. Methods: 136 adults with pre-diabetes and a body mass index of ≥25 kg/m2 underwent a 2-month weight-reducing total meal replacement diet. Participants who lost ≥8% body weight were randomized to one of two 34-month weight-maintenance diets: a higher-protein and moderate-carbohydrate (CHO) diet with low GI, or a moderate-protein and higher-CHO diet with moderate GI. Both arms involved recommendations to increase physical activity. Fasting plasma concentrations of total ghrelin and total peptide YY, and appetite sensations, were measured at 0 months (pre-weight loss), at 2 months (immediately post-weight loss), and at 6, 12, 24, and 36 months. Results: There was a decrease in plasma peptide YY concentrations and an increase in ghrelin after the 2-month weight-reducing diet, and these values approached pre-weight-loss values by 6 and 24 months, respectively (P = 0.32 and P = 0.08, respectively, vs. 0 months). However, there were no differences between the two weight-maintenance diets. Subjective appetite sensations were not affected by the weight-reducing diet nor the weight-maintenance diets. While participants regained an average of ~50% of the weight they had lost by 36 months, the changes in ghrelin and peptide YY during the weight-reducing phase did not correlate with weight regain. Conclusion: A higher-protein, low-GI diet for weight maintenance does not attenuate changes in ghrelin or peptide YY compared with a moderate-protein, moderate-GI diet. Clinical Trial Registry: ClinicalTrials.gov registry ID NCT01777893 (PREVIEW) and ID NCT02030249 (Sub-study).

Keywords: appetite; ghrelin; gut hormones; peptide YY; weight maintenance.

PubMed Disclaimer

Conflict of interest statement

RS serves on the Nestlé Health Science Optifast® VLCDTM™ Advisory Board. JB-M is the President of the Glycemic Index Foundation (a non-profit food endorsement program), oversees a glycemic index testing service at the University of Sydney and is the author of books about the glycemic index, food and healthy eating. AS owns 50% of the shares in Zuman International, a company which receives royalties for books she has written about weight management and payments for presentations at industry conferences. She has also received presentation fees and travel reimbursements from Eli Lilly and Co, the Pharmacy Guild of Australia, Novo Nordisk, the Dietitians Association of Australia, Shoalhaven Family Medical Centres, the Pharmaceutical Society of Australia, and Metagenics, and served on the Nestlé Health Science Optifast VLCD advisory board from 2016 to 2018. FA is a director of the Glycemic Index Foundation (a non-profit food endorsement program), manages a glycemic index testing service at the University of Sydney, and is a co-author of books about the glycemic index. Finally, Cambridge Weight Plan©, Ltd, UK provided all meal replacement products used at all sites of the PREVIEW Study. The commercial and funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, nor in the decision to publish the results. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Trial flow diagram. The trial involved a 2-month weight-reducing diet consisting of a total meal replacement diet with a prescribed daily energy intake of 3,400 kJ (800 kcal). As per the registered trial design, participants who lost 8% or more of their initial body weight proceeded to a 34-month weight-maintenance diet involving either a diet with a higher protein (25% of energy) and moderate carbohydrate content (45% of energy) with a low glycemic index (≤50) (HP/LGI) vs. a diet with a moderate protein (15% of energy) and higher carbohydrate content (55% of energy) with a moderate GI (≥56) (MP/MGI).
Figure 2
Figure 2
Weight (A) and fasting plasma gut hormone concentrations [Ghrelin (B) and Peptide YY (C)] before, during, and after the weight-reducing (gray shaded bar) and weight-maintenance diets of the PREVIEW sub-study [either a higher protein/low GI (HP/LGI) or a moderate-protein/moderate-GI (MP/MGI) weight-maintenance diet]. Results of a constrained linear mixed model (2–36 months) are shown as estimated marginal means (i.e., means adjusted for age, sex, exercise group, and the value at 0 months) ± 95% CI. There were no statistically significant differences between the weight-maintenance diets at any time point (P-values for the interaction of diet*time are shown on each panel). Ghrelin and peptide YY were log-transformed in the analyses.

Similar articles

Cited by

References

    1. Chan M. Obesity and diabetes: the slow-motion disaster. Milbank Q. (2017) 95:11–4. 10.1111/1468-0009.12238 - DOI - PMC - PubMed
    1. Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. . Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. The Lancet. (2017) 390:2627–42. 10.1016/S0140-6736(17)32129-3 - DOI - PMC - PubMed
    1. Collaborators GBDO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. . Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. (2017) 377:13–27. 10.1056/NEJMoa1614362 - DOI - PMC - PubMed
    1. Klein S, Sheard NF, Pi-Sunyer X, Daly A, Wylie-Rosett J, Kulkarni K, et al. . Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies: a statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Diabetes Care. (2004) 27:2067–73. 10.2337/diacare.27.8.2067 - DOI - PubMed
    1. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. . Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. (2006) 29:2102–7. 10.2337/dc06-0560 - DOI - PMC - PubMed

Associated data

LinkOut - more resources