Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 15:596:54-63.
doi: 10.1016/j.jcis.2021.03.126. Epub 2021 Mar 24.

A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel

Affiliations

A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel

Jun Li et al. J Colloid Interface Sci. .

Abstract

Hypothesis: Nanofluidic diodes have attracted intense attention recently. Commonly used materials to design these devices are membrane-based short nanopores and aligned Carbon nanotube bundles. It is highly desirable and very challenging to develop a nanofluidic diode based on a single PDMS nanochannel which is easier to be introduced into an integrated electronic system on a chip. Layer-by-layer (LBL) deposition of charged polyelectrolytes can change the size and surface properties of PDMS nanochannels that provides new possibilities to develop high-performance nanofluidic based on PDMS nanochannels.

Experiments: A novel design of nanofluidic diode is presented by controlling the surface charges and sizes of single PDMS nanochannels by surface modification using polyelectrolytes. Polybrene (PB) and Dextran sulfate (DS) are used to reduce the PDMS nanochannel size to meet the requirement of ion gating by LBL method and generate opposite surface charges at the ends of nanochannels. The parameters of such a nanofluidic diode are investigated systematically.

Findings: This nanofluidic diode developed in this work has high effective current rectification performance. The rectification ratio can be as high as 218 which is the best ever reported in PB/DS modified nanochannels. This rectification ratio reduces with high voltage frequency and ionic concentration whereas increases in shorter nanochannels.

Keywords: Nanochannel; Nanofluidic diode; PDMS; Surface modification.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources