Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 9;21(1):335.
doi: 10.1186/s12879-021-06028-4.

Effects of weather-related social distancing on city-scale transmission of respiratory viruses: a retrospective cohort study

Collaborators, Affiliations

Effects of weather-related social distancing on city-scale transmission of respiratory viruses: a retrospective cohort study

Michael L Jackson et al. BMC Infect Dis. .

Abstract

Background: Unusually high snowfall in western Washington State in February 2019 led to widespread school and workplace closures. We assessed the impact of social distancing caused by this extreme weather event on the transmission of respiratory viruses.

Methods: Residual specimens from patients evaluated for acute respiratory illness at hospitals in the Seattle metropolitan area were screened for a panel of respiratory viruses. Transmission models were fit to each virus to estimate the magnitude reduction in transmission due to weather-related disruptions. Changes in contact rates and care-seeking were informed by data on local traffic volumes and hospital visits.

Results: Disruption in contact patterns reduced effective contact rates during the intervention period by 16 to 95%, and cumulative disease incidence through the remainder of the season by 3 to 9%. Incidence reductions were greatest for viruses that were peaking when the disruption occurred and least for viruses in an early epidemic phase.

Conclusion: High-intensity, short-duration social distancing measures may substantially reduce total incidence in a respiratory virus epidemic if implemented near the epidemic peak. For SARS-CoV-2, this suggests that, even when SARS-CoV-2 spread is out of control, implementing short-term disruptions can prevent COVID-19 deaths.

Keywords: Epidemiology; Influenza, human; Non-Pharmaceutical Interventions; Respiratory syncytial virus, human.

PubMed Disclaimer

Conflict of interest statement

Michael L. Jackson has received grant funding from Sanofi Pasteur, unrelated to the present work. Janet A. Englund is a consultant for Sanofi Pasteur and Meissa Vaccines, Inc., and receives research support from GlaxoSmithKline, AstraZeneca, and Novavax. Helen Chu is a consultant for Merck and GlaxoSmithKline. Gregory R. Hart, Denise J. McCulloch, Amanda Adler, Elisabeth Brandstetter, Kairsten Fay, Peter Han, Kirsten Lacombe, Jover Lee, Thomas R. Sibley, Deborah A. Nickerson, Mark J. Rieder, Lea M. Starita, Amanda Adler, Trevor Bedford, and Michael Famulare declare no competing interests.

Figures

Fig. 1
Fig. 1
Snowfall, and impact on schools and regional transportation – greater Seattle metropolitan area, Jan–Apr 2019. Top panel: public school closures in two representative districts and snowfall inches at Seattle-Tacoma International Airport; center panel, traffic on regional interstate highways vs. expected (green), with mean disruption due to weather (black); bottom panel: regional daily hospital visitsvs. Expected (blue), with mean disruption due to weather (black)
Fig. 2
Fig. 2
Observed and modeled daily counts of positive laboratory tests for nine respiratory viruses – Nov 2018 to May 2019, greater Seattle metropolitan area. The colored lines show the observed daily incidence for each of the nine pathogens. The black line is the model prediction using the maximum likelihood estimate for model parameters. The gray shading encapsulates the effect of uncertainty in the model parameters (95% CI). The vertical solid and dashed black lines mark the beginning and end of weather-related disruptions
Fig. 3
Fig. 3
Effect of weather-related disruption on incidence. Percentage of the population infected over time for the best fit model (gray) and assuming no weather-related disruption in contact patterns (colored). The solid and dashed black lines mark the beginning and end of weather-related social distancing
Fig. 4
Fig. 4
Estimated proportion of influenza A/H3N2 infections averted by a 14-day reduction in contact patterns analogous to those caused by the February 2019 extreme weather disruption, based on cumulative incidence at the time the contact reduction begins

Similar articles

Cited by

References

    1. Kang M, Wu J, Ma W, He J, Lu J, Liu T, et al. Evidence and characteristics of human-to-human transmission of SARS-CoV-2. MedRxiv. 2020. 10.1101/2020.02.03.20019141.
    1. Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, Hernandez M, Quinones-Falconi F, Bautista E, Ramirez-Venegas A, Rojas-Serrano J, Ormsby CE, Corrales A, et al. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med. 2009;361(7):680–689. doi: 10.1056/NEJMoa0904252. - DOI - PubMed
    1. Coleman MT, Dowdle WR, Pereira HG, Schild GC, Chang WK. The Hong Kong-68 influenza A2 variant. Lancet. 1968;2(7583):1384–1386. doi: 10.1016/s0140-6736(68)92683-4. - DOI - PubMed
    1. Ali ST, Cowling BJ, Lau EHY, Fang VJ, Leung GM. Mitigation of influenza B epidemic with school closures, Hong Kong, 2018. Emerg Infect Dis. 2018;24(11):2071–2073. doi: 10.3201/eid2411.180612. - DOI - PMC - PubMed
    1. Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM. Estimating the impact of school closure on influenza transmission from sentinel data. Nature. 2008;452(7188):750–754. doi: 10.1038/nature06732. - DOI - PubMed

LinkOut - more resources