Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr 9;41(1):11.
doi: 10.1186/s41232-021-00161-y.

Transcriptomic studies of systemic lupus erythematosus

Affiliations
Review

Transcriptomic studies of systemic lupus erythematosus

Masahiro Nakano et al. Inflamm Regen. .

Abstract

The management of systemic lupus erythematosus (SLE) remains challenging for clinicians because of the clinical heterogeneity of this disease. In attempts to identify useful biomarkers for the diagnosis of and treatment strategies for SLE, previous microarray and RNA sequencing studies have demonstrated several disease-relevant signatures in SLE. Of these, the interferon (IFN) signature is complex, involving IFNβ- and IFNγ-response genes in addition to IFNα-response genes. Some studies revealed that myeloid lineage/neutrophil and plasma cell signatures as well as the IFN signature were correlated with disease activity, lupus nephritis, and complications of pregnancy, although some of these findings remain controversial. Cell-type-specific gene expression analysis revealed the importance of an exhaustion signature in CD8+ T cells for SLE outcome. Recent single-cell RNA sequencing analyses of SLE blood and tissues demonstrated molecular heterogeneity and identified several distinct subpopulations as key players in SLE pathogenesis. Further studies are required to identify novel treatment targets and determine precise patient stratification in SLE. In this review, we discuss the findings and limitations of SLE transcriptomic studies.

Keywords: Lupus nephritis; Review; Systemic lupus erythematosus; Transcriptome.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Similar articles

Cited by

References

    1. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–2121. doi: 10.1056/NEJMra1100359. - DOI - PubMed
    1. Van Vollenhoven RF, Mosca M, Bertsias G, Isenberg D, Kuhn A, Lerstrøm K, et al. Treat-to-target in systemic lupus erythematosus: recommendations from an international task force. Ann Rheum Dis. 2014;73(6):958–967. doi: 10.1136/annrheumdis-2013-205139. - DOI - PubMed
    1. Franklyn K, Lau CS, Navarra SV, Louthrenoo W, Lateef A, Hamijoyo L, et al. Definition and initial validation of a lupus low disease activity state (LLDAS). Ann Rheum Dis. 2016;75(9):1615–21. 10.1136/annrheumdis-2015-207726. - PubMed
    1. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019 Update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 2019;78(6):736–45. 10.1136/annrheumdis-2019-215089. - PubMed
    1. Tsokos GC, Lo MS, Reis PC, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716–730. doi: 10.1038/nrrheum.2016.186. - DOI - PubMed

LinkOut - more resources