Werner Helicase Is a Synthetic-Lethal Vulnerability in Mismatch Repair-Deficient Colorectal Cancer Refractory to Targeted Therapies, Chemotherapy, and Immunotherapy
- PMID: 33837064
- DOI: 10.1158/2159-8290.CD-20-1508
Werner Helicase Is a Synthetic-Lethal Vulnerability in Mismatch Repair-Deficient Colorectal Cancer Refractory to Targeted Therapies, Chemotherapy, and Immunotherapy
Abstract
Targeted therapies, chemotherapy, and immunotherapy are used to treat patients with mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer. The clinical effectiveness of targeted therapy and chemotherapy is limited by resistance and drug toxicities, and about half of patients receiving immunotherapy have disease that is refractory to immune checkpoint inhibitors. Loss of Werner syndrome ATP-dependent helicase (WRN) is a synthetic lethality in dMMR/MSI-H cells. To inform the development of WRN as a therapeutic target, we performed WRN knockout or knockdown in 60 heterogeneous dMMR colorectal cancer preclinical models, demonstrating that WRN dependency is an almost universal feature and a robust marker for patient selection. Furthermore, models of resistance to clinically relevant targeted therapy, chemotherapy, and immunotherapy retain WRN dependency. These data show the potential of therapeutically targeting WRN in patients with dMMR/MSI-H colorectal cancer and support WRN as a therapeutic option for patients with dMMR/MSI-H cancers refractory to current treatment strategies. SIGNIFICANCE: We found that a large, diverse set of dMMR/MSI-H colorectal cancer preclinical models, including models of treatment-refractory disease, are WRN-dependent. Our results support WRN as a promising synthetic-lethal target in dMMR/MSI-H colorectal cancer tumors as a monotherapy or in combination with targeted agents, chemotherapy, or immunotherapy.This article is highlighted in the In This Issue feature, p. 1861.
©2021 American Association for Cancer Research.
References
-
- Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol. 2019;37:286–95.
-
- Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7:153–62.
-
- Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.
-
- Amirouchene-Angelozzi N, Swanton C, Bardelli A. Tumor evolution as a therapeutic target. Cancer Discov. 2017;7:1–13.
-
- Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials

