Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction
- PMID: 33838744
- PMCID: PMC8015404
- DOI: 10.1016/j.celrep.2021.109014
Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2.
Keywords: CPER; SARS-CoV-2; infectious clone; mutagenesis; reverse genetics.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Figures



Similar articles
-
Efficiency of reverse genetics methods for rescuing severe acute respiratory syndrome coronavirus 2.J Microbiol. 2025 Feb;63(2):e2411023. doi: 10.71150/jm.2411023. Epub 2025 Feb 27. J Microbiol. 2025. PMID: 40044137
-
An optimized circular polymerase extension reaction-based method for functional analysis of SARS-CoV-2.Virol J. 2023 Apr 7;20(1):63. doi: 10.1186/s12985-023-02025-y. Virol J. 2023. PMID: 37029393 Free PMC article.
-
The accuracy of reverse genetics systems for SARS-CoV-2: Circular polymerase extension reaction versus bacterial artificial chromosome.Influenza Other Respir Viruses. 2023 Mar 17;17(3):e13109. doi: 10.1111/irv.13109. eCollection 2023 Mar. Influenza Other Respir Viruses. 2023. PMID: 36935846 Free PMC article.
-
[Advances in the reverse genetics system for RNA viruses].Nihon Yakurigaku Zasshi. 2022;157(2):134-138. doi: 10.1254/fpj.21072. Nihon Yakurigaku Zasshi. 2022. PMID: 35228446 Review. Japanese.
-
Engineering SARS-CoV-2 using a reverse genetic system.Nat Protoc. 2021 Mar;16(3):1761-1784. doi: 10.1038/s41596-021-00491-8. Epub 2021 Jan 29. Nat Protoc. 2021. PMID: 33514944 Free PMC article. Review.
Cited by
-
A rapid and versatile reverse genetics approach for generating recombinant positive-strand RNA viruses that use IRES-mediated translation.J Virol. 2024 Mar 19;98(3):e0163823. doi: 10.1128/jvi.01638-23. Epub 2024 Feb 14. J Virol. 2024. PMID: 38353536 Free PMC article.
-
The SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant.iScience. 2022 Dec 22;25(12):105720. doi: 10.1016/j.isci.2022.105720. Epub 2022 Dec 5. iScience. 2022. PMID: 36507224 Free PMC article.
-
A method for the generation of pseudovirus particles bearing SARS coronavirus spike protein in high yields.Cell Struct Funct. 2022 Jun 25;47(1):43-53. doi: 10.1247/csf.21047. Epub 2022 Apr 28. Cell Struct Funct. 2022. PMID: 35491102 Free PMC article.
-
ORF3c is expressed in SARS-CoV-2-infected cells and inhibits innate sensing by targeting MAVS.EMBO Rep. 2023 Dec 6;24(12):e57137. doi: 10.15252/embr.202357137. Epub 2023 Oct 23. EMBO Rep. 2023. PMID: 37870297 Free PMC article.
-
A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation.Sci Rep. 2021 Jan 26;11(1):2229. doi: 10.1038/s41598-021-82055-0. Sci Rep. 2021. PMID: 33500537 Free PMC article.
References
-
- Almazán F., Dediego M.L., Galán C., Escors D., Alvarez E., Ortego J., Sola I., Zuñiga S., Alonso S., Moreno J.L., et al. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J. Virol. 2006;80:10900–10906. - PMC - PubMed
-
- Dixon A.S., Schwinn M.K., Hall M.P., Zimmerman K., Otto P., Lubben T.H., Butler B.L., Binkowski B.F., Machleidt T., Kirkland T.A., et al. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem. Biol. 2016;11:400–408. - PubMed
-
- Edmonds J., van Grinsven E., Prow N., Bosco-Lauth A., Brault A.C., Bowen R.A., Hall R.A., Khromykh A.A. A novel bacterium-free method for generation of flavivirus infectious DNA by circular polymerase extension reaction allows accurate recapitulation of viral heterogeneity. J. Virol. 2013;87:2367–2372. - PMC - PubMed
-
- Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., et al. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. - PMC - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous