mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability
- PMID: 33839230
- PMCID: PMC8032477
- DOI: 10.1016/j.ijpharm.2021.120586
mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability
Abstract
A drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability. Analysis of mRNA-LNP structures reveals that mRNA, the ionizable cationic lipid and water are present in the LNP core. The neutral helper lipids are mainly positioned in the outer, encapsulating, wall. mRNA hydrolysis is the determining factor for mRNA-LNP instability. It is currently unclear how water in the LNP core interacts with the mRNA and to what extent the degradation prone sites of mRNA are protected through a coat of ionizable cationic lipids. To improve the stability of mRNA-LNP vaccines, optimization of the mRNA nucleotide composition should be prioritized. Secondly, a better understanding of the milieu the mRNA is exposed to in the core of LNPs may help to rationalize adjustments to the LNP structure to preserve mRNA integrity. Moreover, drying techniques, such as lyophilization, are promising options still to be explored.
Keywords: COVID-19; Lipid nanoparticle (LNP); Lyophilization; Shelf life; Storage stability; Structure; Vaccine; mRNA.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures








Similar articles
-
Chemistry of Lipid Nanoparticles for RNA Delivery.Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1. Acc Chem Res. 2022. PMID: 34850635 Review.
-
Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions.Mol Pharm. 2023 Dec 4;20(12):6492-6503. doi: 10.1021/acs.molpharmaceut.3c00956. Epub 2023 Nov 17. Mol Pharm. 2023. PMID: 37975733
-
Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids.Biomater Sci. 2023 Jun 13;11(12):4327-4334. doi: 10.1039/d2bm02031a. Biomater Sci. 2023. PMID: 37073472
-
CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids.J Chem Inf Model. 2021 Oct 25;61(10):5192-5202. doi: 10.1021/acs.jcim.1c00770. Epub 2021 Sep 21. J Chem Inf Model. 2021. PMID: 34546048 Free PMC article.
-
From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases.Acta Biomater. 2021 Sep 1;131:16-40. doi: 10.1016/j.actbio.2021.06.023. Epub 2021 Jun 18. Acta Biomater. 2021. PMID: 34153512 Free PMC article. Review.
Cited by
-
A comparison between SARS-CoV-1 and SARS-CoV2: an update on current COVID-19 vaccines.Daru. 2022 Dec;30(2):379-406. doi: 10.1007/s40199-022-00446-8. Epub 2022 Sep 2. Daru. 2022. PMID: 36050585 Free PMC article. Review.
-
Molecular Dynamics Simulation of Lipid Nanoparticles Encapsulating mRNA.Molecules. 2024 Sep 17;29(18):4409. doi: 10.3390/molecules29184409. Molecules. 2024. PMID: 39339404 Free PMC article.
-
Immunogenicity and biodistribution of lipid nanoparticle formulated self-amplifying mRNA vaccines against H5 avian influenza.NPJ Vaccines. 2024 Aug 3;9(1):138. doi: 10.1038/s41541-024-00932-x. NPJ Vaccines. 2024. PMID: 39097672 Free PMC article.
-
Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases.RNA Biol. 2022;19(1):386-410. doi: 10.1080/15476286.2022.2055923. Epub 2021 Dec 31. RNA Biol. 2022. PMID: 35354425 Free PMC article. Review.
-
IgG anti-RBD levels during 8-month follow-up post-vaccination with BNT162b2 and mRNA-1273 vaccines in healthcare workers: A one-center study.Front Cell Infect Microbiol. 2022 Nov 30;12:1035155. doi: 10.3389/fcimb.2022.1035155. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 36530428 Free PMC article.
References
-
- Yanez Arteta M., Kjellman T., Bartesaghi S., Wallin S., Wu X., Kvist A.J., Dabkowska A., Székely N., Radulescu A., Bergenholtz J., Lindfors L. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2018;115(15):E3351–E3360. doi: 10.1073/pnas.1720542115. - DOI - PMC - PubMed
-
- Ayat N.R., Sun Z., Sun D.a., Yin M., Hall R.C., Vaidya A.M., Liu X., Schilb A.L., Scheidt J.H., Lu Z.-R. Formulation of biocompatible targeted ECO/siRNA nanoparticles with long-term stability for clinical translation of RNAi. Nucleic Acid Ther. 2019;29(4):195–207. doi: 10.1089/nat.2019.0784. - DOI - PMC - PubMed
-
- Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., Diemert D., Spector S.A., Rouphael N., Creech C.B., McGettigan J., Khetan S., Segall N., Solis J., Brosz A., Fierro C., Schwartz H., Neuzil K., Corey L., Gilbert P., Janes H., Follmann D., Marovich M., Mascola J., Polakowski L., Ledgerwood J., Graham B.S., Bennett H., Pajon R., Knightly C., Leav B., Deng W., Zhou H., Han S., Ivarsson M., Miller J., Zaks T. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021;384(5):403–416. doi: 10.1056/NEJMoa2035389. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical