Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 15:782:146770.
doi: 10.1016/j.scitotenv.2021.146770. Epub 2021 Mar 27.

Well-to-wake analysis of switchgrass to jet fuel via a novel co-fermentation of sugars and CO2

Affiliations

Well-to-wake analysis of switchgrass to jet fuel via a novel co-fermentation of sugars and CO2

Abhiram Siva Prasad Pamula et al. Sci Total Environ. .

Abstract

Lignocellulosic biomass such as switchgrass can be converted to n-butanol using fermentation, which can be further processed into jet fuel. Traditional acetone-butanol-ethanol (ABE) fermentation only converts sugars derived from switchgrass to ABE. Novel co-fermentation processes convert sugars and gas (CO2/H2) produced during fermentation into butanol, thus increasing ABE yields by 15.5% compared to traditional ABE fermentation. Herein, the environmental impact of a Switchgrass to Jet Fuel (STJ) pathway was assessed using life cycle assessment (LCA) from well-to-wake. LCAs were performed for greenhouse gas (GHG) emissions from jet fuel production via co-fermentation of sugars and gas for ideal and practical cases of ABE fermentation and seven other jet fuel pathways. The ideal case assumes 100% sugar recovery and 95% ABE yield. The practical case assumes 90% sugar recovery and an 80% ABE yield. Results are presented based on 100-year global warming potential (GWP) per MJ of jet fuel. Co-products were allocated using various methods. The increase in butanol yield via the co-fermentation technology reduced GWP-100 for the STJ pathway by 6.5% compared to traditional ABE fermentation. Similarly, the STJ pathway for the practical case with co-fermentation had 14.2%, 47.5%, 73.8%, and 44.4% less GWP-100 compared to HRJ, Fischer-Tropsch jet fuel from switchgrass, Fischer-Tropsch jet fuel from coal, and conventional petroleum jet fuel. The results demonstrate that the STJ pathway via co-fermentation has the potential to increase product yield while reducing GHG emissions compared to other jet fuel production pathways.

Keywords: Co-fermentation of sugars and gas; Global warming potential; Greenhouse gas emissions; Jet fuel; Life cycle assessment; Switchgrass.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources