Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2021 Sep;28(9):560-571.
doi: 10.1038/s41434-021-00254-w. Epub 2021 Apr 13.

CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma

Affiliations
Clinical Trial

CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma

Sabrina Prommersberger et al. Gene Ther. 2021 Sep.

Abstract

Clinical development of chimeric antigen receptor (CAR)-T-cell therapy has been enabled by advances in synthetic biology, genetic engineering, clinical-grade manufacturing, and complex logistics to distribute the drug product to treatment sites. A key ambition of the CARAMBA project is to provide clinical proof-of-concept for virus-free CAR gene transfer using advanced Sleeping Beauty (SB) transposon technology. SB transposition in CAR-T engineering is attractive due to the high rate of stable CAR gene transfer enabled by optimized hyperactive SB100X transposase and transposon combinations, encoded by mRNA and minicircle DNA, respectively, as preferred vector embodiments. This approach bears the potential to facilitate and expedite vector procurement, CAR-T manufacturing and distribution, and the promise to provide a safe, effective, and economically sustainable treatment. As an exemplary and novel target for SB-based CAR-T cells, the CARAMBA consortium has selected the SLAMF7 antigen in multiple myeloma. SLAMF7 CAR-T cells confer potent and consistent anti-myeloma activity in preclinical assays in vitro and in vivo. The CARAMBA clinical trial (Phase-I/IIA; EudraCT: 2019-001264-30) investigates the feasibility, safety, and anti-myeloma efficacy of autologous SLAMF7 CAR-T cells. CARAMBA is the first clinical trial with virus-free CAR-T cells in Europe, and the first clinical trial that uses advanced SB technology worldwide.

PubMed Disclaimer

Conflict of interest statement

MH and ZI are co-inventors on patents relating to Sleeping Beauty transposon technology.

Figures

Fig. 1
Fig. 1. CAR-T-cell manufacturing pipeline.
Patients undergo leukapheresis in the clinic to extract T cells, which are transported to a GMP facility, where manufacturing takes place. The CAR gene is introduced into the cells’ genome, leading to receptor expression and conversion into a CAR-T cell. CAR-T cells are then expanded in order to reach therapeutically relevant numbers. Finally, product formulation takes place, and the manufactured product is transported back to the clinic to be infused into the patient. CAR composition: antigen binding domain (1), transmembrane domain (2) spanning the cell membrane (3), costimulatory domain (4), and signaling domain (5).
Fig. 2
Fig. 2. Schematic overview of gene delivery with Sleeping Beauty transposition.
The SB transposase is introduced into a cell in form of DNA (expression plasmid), mRNA, or recombinant protein along with donor DNA in which the transposon to be mobilized is located. After binding within the terminal inverted repeats of the transposon (TIRs, yellow rectangles) flanking a gene of interest (GOI, green rectangle), SB transposase (blue circles) performs the excision of the transposon from the donor DNA (black strand) and integrates it into a site in the genomic target DNA (purple strand).
Fig. 3
Fig. 3. Schematic of the CARAMBA CAR construct and manufacturing process.
A Schematic of the transposon construct: an EF1α promoter drives expression (arrow) of the SLAMF7 CAR (modeled after the medicinal antibody elotuzumab) and, by means of a T2A element, the human truncated EGFR (huEGFRt). GMCSFRss: GM-CSF receptor-α chain signal sequences. B Flowchart of CARAMBA IMP manufacturing. Manufacturing steps are (1) apheresis, (2) immunomagnetic selection and CD3/CD28 activation, (3) nucleofection with SB100X transposase mRNA and SLAMF7 CAR-tEGFR transposon, (4) CD3/CD28-bead removal and transfer to G-Rex culture flasks, (5) half-medium change, and (6) harvest and formulation.
Fig. 4
Fig. 4. Multiple myeloma cells expressing SLAMF7 and targeting them with CAR-T cells.
A dSTORM image showing SLAMF7 molecules expressed on MM.1S (ATCC ref. CRL-2974) cells. Cells were stained with anti-SLAMF7 Alexa Fluor 647 antibody. The inset displays a bright field image of the same cells. B Confocal microscope image showing the interaction between a SLAMF7 CAR-T cell and a MM.1S target cell. Cells were stained with phalloidin Atto643 for actin (green), with anti-CAR CF568 antibody (orange) and Hoechst 34580 for nuclei (blue).

Similar articles

Cited by

References

    1. McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA. 1950;36:344–55. doi: 10.1073/pnas.36.6.344. - DOI - PMC - PubMed
    1. Ivics Z, Izsvak Z. The expanding universe of transposon technologies for gene and cell engineering. Mob DNA. 2010;1:25. doi: 10.1186/1759-8753-1-25. - DOI - PMC - PubMed
    1. Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, et al. Transposon-mediated genome manipulation in vertebrates. Nat Methods. 2009;6:415–22. doi: 10.1038/nmeth.1332. - DOI - PMC - PubMed
    1. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997;91:501–10. doi: 10.1016/S0092-8674(00)80436-5. - DOI - PubMed
    1. Narayanavari SA, Chilkunda SS, Ivics Z, Izsvak Z. Sleeping Beauty transposition: from biology to applications. Sleeping Beauty. 2017;52:18–44. - PubMed

Publication types

Substances